J. Wengenroth WS 2015/16

ÜBUNGEN ZU FUNKTIONALANALYSIS

Blatt 2

Besprechung in der Übung am 10. November, 8:30 in E44

Aufgabe 5

Seien $(X, \|\cdot\|_X)$ und $(Y, \|\cdot\|_Y)$ zwei Banach-Räume.

- (a) Zeigen Sie, dass $X \times Y$ versehen mit der Norm $\|(x,y)\|_{X\times Y} = \|x\|_X + \|y\|_Y$ wiederum ein Banach-Raum ist.
- (b) Für $L \sqsubseteq X$ und die Einschränkung $\|\cdot\|_L$ von $\|\cdot\|_X$ auf L ist $(L, \|\cdot\|_L)$ genau dann ein Banach-Raum, wenn L abgeschlossen ist.
- (c) Seinen Z ein Vektorraum und $i: Z \to X$ eine lineare Abbildung, so dass i(Z) in X abgeschlossen ist. Dann ist durch $||z||_Z = ||i(z)||_X$ eine vollständige Halbnorm definiert. Ist außerdem i injektiv, so ist $(Z.||\cdot||_Z)$ wieder ein Banach-Raum.
- (d) Denken Sie erneut über Aufgabe 1 nach.

Aufgabe 6

Es sei $T: (\ell_1, \|\cdot\|_1) \to (\ell_2, \|\cdot\|_2), T(x) = x$. Zeigen Sie, dass T eine wohldefinierte, stetige lineare Abbildung ist mit

$$\forall y \in \ell_2, \varepsilon > 0 \,\exists x \in \ell_1 : \|T(x) - y\|_2 < \varepsilon$$

aber dass T nicht surjektiv ist. Ist dies ein Widerspruch zum Satz 1.3 der Vorlesung?

Aufgabe 7

- (a) Es sei (X, \mathscr{P}) ein lokalkonvexer Raum mit abzählbarem $\mathscr{P} = \{p_m : m \in \mathbb{N}\}$. Dann existiert für alle $A \subset X$ und $x \in \overline{A}$ eine Folge $(a_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}$ mit $a_n \to x$ (d.h. $\lim_{n \to \infty} p(x_n a) = 0$ für alle $p \in \mathscr{P}$).
- (b) Seien $X=\{f:\mathbb{R}\to\mathbb{K} \text{ Abbildung}\}$, und für $E\subseteq\mathbb{R}$ endlich seien

$$p_E(f) := \max\{|f(t)| : t \in E\}$$

sowie $\mathscr{P} := \{ p_E : E \subseteq \mathbb{R} \text{ endlich} \}.$

Zeigen Sie für $A = \{ f \in X : \{ t \in \mathbb{R} : f(t) \neq 0 \} \text{ abzählbar} \}$, dass $\overline{A} = X$ gilt aber keine Folge $(f_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}$ existiert mit $f_n \to \exp$.