Einführung in die Mathematik Übungsblatt 12

Abgabe: Mittwoch, 03.02.2010, 10.00 Uhr, Übungskasten 5

Aufgabe 1

Für $x \notin \{(n+1/2)\pi : n \in \mathbb{Z}\}$ definieren wir den Tangens durch $\tan(x) = \frac{\sin(x)}{\cos(x)}$.

Zeigen Sie, dass der Tangens für jedes $n \in \mathbb{Z}$ auf $](n-\frac{1}{2})\pi, (n+\frac{1}{2})\pi[$ stetig ist, und dass für $x, y \in \mathbb{R}$ mit $x, y, x + y \notin \{(n+1/2)\pi : n \in \mathbb{Z}\}$ gilt

$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}.$$

Aufgabe 2

Zeigen Sie, dass es für jede komplexe Zahl $z \neq 0 \in \mathbb{C}$ genau n verschiedene Zahlen $w_0, ..., w_{n-1}$ gibt mit $w_i^n = z$.

Hinweis

Untersuchen Sie für $z = |z|e^{i\varphi}$ mit $\varphi \in [0, 2\pi[$ die Zahlen $w_j = \sqrt[n]{|z|}e^{i(\varphi + 2\pi j)/n}$.

Aufgabe 3

Sei (X,d) ein metrischer Raum. Für $M\subseteq X$ nennen wir $x\in X$ einen Häufungspunkt von M, wenn $x\in \overline{M\setminus \{x\}}$. Zeigen Sie, dass die Menge HP(M) der Häufungspunkte von M abgeschlossen ist.

Hinweis

Zeigen Sie, dass $X \setminus HP(M)$ nur aus inneren Punkten besteht.

Aufgabe 4

Sei $f: \mathbb{R} \to \mathbb{R}$ stetig. Zeigen Sie, dass der Graph von f als Teilmenge von \mathbb{R}^2 bezüglich der euklidischen Metrik abgeschlossen ist. Zeigen Sie durch ein Gegenbeispiel, dass die umgekehrte Implikation im Allgemeinen falsch ist.

Aufgabe 5

Sei (X, d) ein metrischer Raum. Für ein festes $A \subseteq X$ definieren wir die Abbildung $\operatorname{dist}_A(x) = \inf\{d(x, a) : a \in A\}.$

Zeigen Sie die Ungleichung $|\operatorname{dist}_A(x) - \operatorname{dist}_A(y)| \leq d(x, y)$ und schließen Sie daraus, dass die Distanz-Funktion stetig ist. Beweisen Sie außerdem, dass dist_A(x) genau dann 0 ist, wenn $x \in \overline{A}$.

Bonusaufgabe 1 Seien (X, d) ein metrischer Raum.

- (a) Seien $f, g: X \to \mathbb{R}$ stetig. Zeigen Sie, dass sowohl das Maximum als auch das Minimum von f und g wieder stetige Funktionen sind.
- (b) Zeigen Sie, dass eine Teilmenge A von X genau dann offen ist, wenn es eine stetige Abbildung $F: X \to [0,1]$ gibt, mit $A = \{x \in X : f(x) > 0\}$.

Hinweis

Für (a) ist das Maximum durch $\mu(x) = \max\{f(x), g(x)\}\$ definiert.

Für (b) kann die Aufgabe 5 hilfreich sein.