WS 2009/10 13.01.2010N. Kenessey

Einführung in die Mathematik Übungsblatt 10

Abgabe: Mittwoch, 20.01.2010, 10.00 Uhr, Übungskasten 5

Aufgabe 1

Für $z \in \mathbb{C}$ definieren wir Cosinus hyperbolicus und Sinus hyperbolicus durch

$$\cosh(z) = \frac{e^z + e^{-z}}{2} \quad \text{ und } \quad \sinh(z) = \frac{e^z - e^{-z}}{2}.$$

- (a) Weisen Sie nach, dass cosh und sinh auf C stetig sind und bestimmen Sie ihre Potenzreihendarstellungen.
- (b) Beweisen Sie die Identität $\cosh^2 \sinh^2 = 1$.
- (c) Zeigen Sie, dass $\sinh |_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}$ streng monoton wachsend ist.

Aufgabe 2

- (a) Für $\mathbb{N}_{\infty} = \mathbb{N} \cup \{\infty\}$ definieren wir $\frac{1}{\infty} = 0$. Zeigen Sie, dass durch $\Delta(n, m) = \left|\frac{1}{n} \frac{1}{m}\right|$ eine Metrik auf \mathbb{N}_{∞} definiert ist. Beweisen Sie außerdem $B_{\Delta}(n, r) = \{n\}$ für alle $n \in \mathbb{N}$ und $0 < r < \frac{1}{n(n+1)}$ sowie $B_{\Delta}(\infty, r) = \{ n \in \mathbb{N}_{\infty} : n > \frac{1}{n} \}.$
- (b) Seien weiter (X, d) ein metrischer Raum und $f: \mathbb{N}_{\infty} \to X$ eine Abbildung. Zeigen Sie, dass f in jedem Punkt $n \in \mathbb{N}$ stetig ist, und dass f genau dann in ∞ stetig ist, wenn die Folge $(f_n)_{n \in \mathbb{N}} = (f(n))_{n \in \mathbb{N}}$ in (X, d) gegen $f(\infty)$ konvergiert.

Aufgabe 3

- (a) Zeigen Sie, dass $f: \mathbb{C} \to \mathbb{C}, z \mapsto \frac{\exp(\exp(z+z^2+z^3))}{1+z\overline{z}}$ stetig auf \mathbb{C} ist.
- (b) Bestimmen Sie alle Punkte, in denen $f: \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} x, & \text{falls } x \in \mathbb{Q} \\ x^2, & \text{falls } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ stetig ist.

Aufgabe 4

Wir stellen $q \in \mathbb{Q}$ als maximal gekürzten Bruch $q = \frac{z(q)}{n(q)}$ mit dem minimalen Nenner $n(q) \in \mathbb{N}$ dar. Wir definieren $f: \mathbb{R} \to \mathbb{R}$ durch $f(t) = \begin{cases} 0, & t \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{n(t)}, & t \in \mathbb{Q} \end{cases}$. Zeigen Sie, dass f genau dann stetig in $\xi \in \mathbb{R}$ ist, wenn $\xi \in \mathbb{R} \setminus \mathbb{Q}$.

Hinweis: Falls $\xi \in \mathbb{R} \setminus \mathbb{Q}$ und $\varepsilon > 0$ überlege man sich, dass es nur endlich viele rationale $q \in [\xi - 1, \xi + 1]$ mit $n(q) \leq \frac{1}{\varepsilon}$ gibt, und betrachte $\delta = \min\{|\xi - q| : q \in \mathbb{Q}, n(q) \leq \frac{1}{\varepsilon}\}$

- (a) Seien $h(z) = \sum_{n=0}^{\infty} a_n z^n$ eine Potenzreihe mit Konvergenzradius R > 0 sowie $a_0 \neq 0$. Zeigen Sie, dass es ein 0 < r < R gibt so dass h auf B(0, r) keine Nullstelle hat.
- (b) Seien $f(z) = \sum_{n=p}^{\infty} a_n z^n$ und $g(z) = \sum_{n=q}^{\infty} b_n z^n$ zwei Potenzreihen mit positivem Konvergenzradius, $a_p b_q \neq 0$ und $p \geq q$. Zeigen Sie, dass ein r > 0 und ein $c \in \mathbb{C}$ existieren, so dass die Funktion $Q: \mathbb{B}(0,r) \to \mathbb{C}, z \mapsto egin{cases} rac{f(z)}{g(z)}, & z
 eq 0 \\ c, & z = 0 \end{cases}$ wohldefiniert und stetig ist.