SS 2013 14.05.2013

Topologie Übungsblatt 5

Abgabe: Dienstag, 28. Mai 2013, vor der Übung in Übungskasten 5

Aufgabe 17

Zeigen Sie für einen topologischen Raum (X, \mathcal{T}) die Äquivalenz folgender Aussagen:

- (1) (X, \mathcal{T}) ist Hausdorff.
- (2) Die Diagonale $\Delta = \{(x, x) : x \in X\}$ ist bezüglich der Produkttopologie auf $X \times X$ abgeschlossen.
- (3) Für jede stetige Abbildung $f:(Y,\mathcal{S})\to (X,\mathcal{T})$ von einem topologischen Raum (Y,\mathcal{S}) nach (X,\mathcal{T}) ist der Graph $G(f)=\{(y,f(y)):y\in Y\}$ bezüglich der Produkttopologie auf $Y\times X$ abgeschlossen.

Aufgabe 18

Sei $\mathcal{T} = \{] - \infty, a[: a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}.$

- (a) Zeigen Sie, dass eine nicht-leere Menge $K \subseteq \mathbb{R}$ genau dann \mathscr{T} -kompakt ist, wenn $\sup(K) \in K$ gilt.
- (b) Finden Sie zwei kompakte Teilmengen von $(\mathbb{R}, \mathcal{T})$, deren Durchschnitt nicht kompakt ist.

Aufgabe 19

Zeigen Sie, dass jede kompakte Teilmenge eines halbmetrischen Raums eine abzählbare dichte Teilmenge hat. (Dabei helfen die Überdeckungen $K \subseteq \bigcup_{x \in K} B(x, 1/n)$.)

Aufgabe 20

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ eine surjektive stetige Abbildung. Zeigen Sie, dass jede reelle Zahl unendlich oft als Wert angenommen wird.

Tipp: Für $x \in \mathbb{R}$ gilt $\mathbb{R}^2 \setminus f^{-1}(\{x\}) = f^{-1}(]-\infty, x[) \cup f^{-1}(]x, \infty[)$. Andererseits sind in \mathbb{R}^2 Komplemente endlicher Mengen zusammenhängend.