J. Wengenroth WS 2010/11 N. Kenessey 13.01.2011

M. Riefer

Maß - und Integrationstheorie Übungsblatt 10

Abgabe: Donnerstag, 20.01.2011, 12.00 Uhr, Übungskasten 5

Tutoriumsaufgaben

Tutorium:

Die Aufgaben T 1 - T 3 werden am Montag im Tutorium besprochen. Dieses findet am 17.01.2011 um 12:00 statt.

T 1

Seien ν und μ zwei lokalendliche Maße auf $(\mathbb{R}^n, \mathbb{B}_n)$, sowie $1 \leq p < \infty$. Zeigen Sie, dass es zu jedem $\varepsilon > 0$ und $f \in \mathcal{L}_p(\nu) \cap \mathcal{L}_p(\mu)$ ein $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ gibt, das f sowohl in $\mathcal{L}_p(\nu)$ als auch in $\mathcal{L}_p(\mu)$ bis auf ε approximiert.

T 2

Betrachten Sie das durch $\mu=\delta_0+\sum_{k=1}^\infty \delta_{\frac{1}{k}}$ definierte Maß auf (\mathbb{R},\mathbb{B}) . Zeigen Sie, dass Satz 4.8 bereits für $n=1,\ p=1$ und $f=I_{\{0\}}$ falsch ist.

Т 3

Seien $(\Omega, \mathcal{A}, \mu)$ ein σ -endlicher Maßraum, $f \in \mathcal{M}_+(\Omega, \mathbb{R})$ reellwertig und $\nu = f \cdot \mu$. Zeigen Sie, dass $\mu \ll \nu$ genau dann gilt, wenn $f \neq 0$ μ -f.s., und beweisen Sie in diesem Fall $\mu = \frac{1}{f} \cdot \nu$.

Übungsaufgaben

Übungen: Donnerstag, 10:00-12:00 E10 und 14:00-16:00 E52 Diese Aufgaben sollen bis Donnerstag, den 20.01.2011, 12:00 im Übungskasten 5 abgegeben werden.

Aufgabe 1

Seien ν, μ zwei lokalendliche Maße auf $(\mathbb{R}^n, \mathbb{B}^n)$, für die

$$\int \varphi d\nu = \int \varphi d\mu$$

für alle $\varphi \in C_0^\infty(\mathbb{R}^n)$ gilt. Zeigen Sie $\nu = \mu$.

Aufgabe 2

Seien $\{q_n : n \in \mathbb{N}\}$ eine Abzählung von \mathbb{Q} sowie $\mu = \sum_{n=1}^{\infty} \delta_{q_n}$. Zeigen Sie, dass die einzige Funktion in $C_0^{\infty}(\mathbb{R}) \cap \mathcal{L}_1(\mu)$ die Nullfunktion ist.

Aufgabe 3

Eine komplexwertige Funktion $f:\Omega\to\mathbb{C}$ heißt komplex-integrierbar, wenn Real- und Imaginärteil reell-integriebrar sind. In diesem Fall definiert man

$$\int f d\mu = \int \Re f d\mu + i \int \Im f d\mu.$$

Zeigen Sie, dass $|f| \in \mathcal{L}_p(\mu) \iff \Re f \in \mathcal{L}_p(\mu)$ und $\Im f \in \mathcal{L}_p(\mu)$ und, dass für $|f| \in \mathcal{L}_1(\mu)$ die Abschätzung

$$\left| \int f d\mu \right| \le \int |f| d\mu$$

gilt.

Hinweis

Schreiben Sie $|\int f d\mu| = \overline{z}z$ mit geeignetem $z \in \mathbb{C}$.

Aufgabe 4

Für $f \in \mathcal{L}_1(\mathbb{R}, \mathbb{B}, \lambda_1)$ definieren wir

$$\hat{f}(t) = \int e^{-itx} f(x) d\lambda_1(x).$$

Zeigen Sie $\lim_{t \to \pm \infty} \hat{f}(t) = 0.$

Hinweis:

Man zeige zuerst die Behauptung für $f\in C_0^\infty(\mathbb{R})$ mit Hilfe von partieller Integration und benutze dann Satz 4.8.