SS 2012

04.07.2012

Funktionalanalysis Übungsblatt 10

Abgabe: Mittwoch, 11.07.2012, 08.00 Uhr, Übungskasten 5

Aufgabe 1

Seien $K \subseteq \mathbb{C}$ kompakt und $\Omega \subseteq \mathbb{C}$ eine offene Obermenge von K. Zeigen Sie (für $||f||_{\Omega} = \sup\{|f(z)| : z \in \Omega\}$), dass $M = \{f|_K : f \in H(\Omega), ||f||_{\Omega} \leq 1\}$ in $(C(K), ||\cdot||_K)$ relativ kompakt ist.

Hinweis: Für die gleichgradige Stetigkeit benutze man um $z_0 \in K$ die Cauchysche Integralformel für einen kleinen Kreis um z_0 .

Aufgabe 2

Ein lokalkonvexer Raum (X, \mathscr{P}) heißt Schwartz-Raum, wenn für jedes $p \in \mathscr{P}$ ein $q \in \mathscr{P}$ existiert, so dass $B_q(0,1)$ bezüglich p präkompakt ist, d.h. für alle $\varepsilon > 0$ gibt es $E \subseteq B_q(0,1)$ endlich mit $B_q(0,1) \subseteq \bigcup_{\tau} B_p(x,\varepsilon)$.

(a) Zeigen Sie, dass in Fréchet-Schwartz-Räumen abgeschlossene beschränkte Mengen stets kompakt sind.

Hinweis: Wegen 3.10.d reicht es die Präkompaktheit zu zeigen.

(b) Für jedes offene $\Omega \subseteq \mathbb{C}$ ist $H(\Omega)$ mit $\mathscr{P} = \{\|\cdot\|_K : K \subseteq \Omega \text{ kompakt }\}$ ein Fréchet-Schwartz-Raum.

Hinweis: Man verwende die Aufgabe 1 für L mit $K \subseteq \mathring{L}$.

(c) Unendlichdimensionale Banach-Räume sind nicht Schwartz.

Aufgabe 3

Seien $(X, \|\cdot\|)$ ein normierter Raum, $(X', \|\cdot\|')$ das normierte Dual sowie $X'' = (X', \|\cdot\|')'$ und

$$J: X \to X'', x \mapsto \delta_x$$

mit $\delta_x(\varphi) = \varphi(x)$. Wegen der Aufgabe 1 auf dem Blatt 3 definiert J eine Isometrie (also $\|\delta_x\|'' = \|x\|$). Zeigen Sie, dass J genau dann surjektiv ist, wenn $B = \{x \in X : \|x\| \le 1\}$ eine $\sigma(X, X')$ -kompakte Menge ist.

Hinweis: Man überlege sich, dass $J:(X,\sigma(X,X'))\to (X'',\sigma(X'',X'))$ stetig und offen auf sein Bild ist und dass $B^{\circ\circ}=\{\Phi\in X'':\|\Phi\|''\leq 1\}$ gilt. Wegen des Bipolarensatzes ist dann $B^{\circ\circ}=J(B)^{\bullet\circ}=\overline{J(B)}^{\sigma(X'',X')}$. Außerdem ist $B^{\circ\circ}$ wegen des Satzes von Alaŏglu $\sigma(X'',X')$ -kompakt.

Aufgabe 4

Seien $\Omega \subseteq \mathbb{R}^d$ offen und (X, \mathscr{P}) ein Fréchet-Raum. Wir versehen $C(\Omega, X)$ mit den Halbnormen $p_K(f) = \sup\{p(f(x)) : x \in K\}$, wobei $K \subseteq \Omega$ kompakt und $p \in \mathscr{P}$. Zeigen Sie, dass jede punktweise relativ kompakte und gleichgradig stetige Menge $M \subseteq C(\Omega, X)$ bereits relativ kompakt ist.

Hinweis: Wenn man zeigt, dass $C(\Omega, X)$ ein Fréchet-Raum ist, reicht es die Präkompaktheit von M zu zeigen. Diese folgt wiederum aus dem Satz von Arzelá-Ascoli.

Bonusaufgabe [10 Sonderpunkte]

Was passiert, wenn (X, \mathcal{P}) bloß metrisierbar, aber womöglich unvollständig ist?