J. Wengenroth

SS 2011 07.07.2011 N. Kenessey

M. Riefer

Differentialgleichungen und Integralsätze Übungsblatt 11

Tutoriumsaufgaben

Tutorium:

Die Aufgaben T 1 - T 3 werden am Dienstag im Tutorium besprochen. Dieses findet am 12.07.2011 um 12:25 im E51 statt.

Seien $M \subseteq \mathbb{R}^m$ eine (randlose) n-dimensionale \mathbb{C}^k -Mannigfaltigkeit und $\mathbb{L} \subseteq$ \mathbb{R}^{ℓ} eine berandete j-dimensionale \mathbb{C}^k -Mannigfaltigkeit. Zeigen Sie, dass $M \times \mathbb{R}^{\ell}$ L eine n+j-dimensionale berandete Mannigfaltigkeit ist. Bestimmen Sie die Tangentialräume $T_{(x,y)}M \times L$ in Abhängigkeit von T_xM und T_yL .

Seien $\sigma, \gamma: [0,1]^3 \to \mathbb{R}^3$ stetig differenzierbar auf $[0,1]^3$ injektiv mit strikt positiver Funktionaldeterminante und gleichem Bild $M = \sigma([0,1]^3) = \gamma([0,1]^3)$. Zeigen Sie für eine offene Obermenge U von M und stetige $\eta \in \Omega_0^3 U, \omega \in \Omega_0^2 U$ die Identitäten

$$\int_{\sigma} \eta = \int_{\gamma} \eta \qquad \text{und} \qquad \int_{\partial \sigma} \omega = \int_{\partial \gamma} \omega.$$

Dies bedeutet gerade, dass die Begriffe $\int\limits_{M}\eta$ und $\int\limits_{\partial M}\omega$ wohldefiniert sind.

Hinweis:

Wegen des im Beweis zum Area-Theorem (Satz 7.5 MIT) gezeigten Satzes von Sard ist $\lambda_3(\gamma(\partial[0,1]^3)) = 0$. Dadurch kann man die Substitutionsregel (Satz 6.5 MIT) auf γ anwenden.

T 3

- (i) Seien r(t) = t(1-t) und $f:]0, \pi/2[\to \mathbb{R}^2$ definiert durch $f(t) = r(t) \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$. Zeigen Sie, dass f injektiv ist mit $f'(t) \neq 0$ für alle $t \in]0, \pi/2[$. Ist das Bild von f ein 1-dimensionale Mannigfaltigkeit?
- (ii) Sei M eine kompakte n-dimensionale berandete C^k -Mannigfaltigkeit im \mathbb{R}^m . Zeigen Sie, dass $\partial M \neq \emptyset$, falls n=m. Stimmt das auch, wenn man nur n < m oder M abgeschlossen voraussetzt?

Übungsaufgaben

Übung: Donnerstag, 08:30-10:00 und 10:00-11:30 im E52 Diese Aufgaben werden am Mittwoch, den 13.07.2011 14:00-16:00 im E44 und Donnerstag, den 14.07.2011 08:00-10:00 im E 52 besprochen.

Aufgabe 1

Sei $\gamma:[0,1]^2\to\mathbb{R}^2$ stetig differenzierbar und injektiv auf $]0,1[^2$ mit det $\gamma'(t)>0$ für alle $t\in]0,1[^2$. Zeigen Sie für eine offene Obermenge U von $M=\gamma([0,1]^2)$ und $f,g\in C^2(U,\mathbb{R})$ die sog. zweite Greensche Formel:

$$\int_{M} f\Delta g - g\Delta f d\lambda_2 = \int_{\partial M} (gD_2 f - fD_2 g) dx_1 + (fD_1 g - gD_1 f) dx_2,$$

wobei $\Delta f = D_1^2 f + D_2^2 f$ (Δ heißt Laplace-Operator).

Aufgabe 2

Seien γ wie in der Tutoriumsaufgabe T2, $M = \gamma([0,1]^3)$ und $F,G: U \to \mathbb{R}^3$ stetig differenzierbar auf einer offenen Obermenge U von M mit F = G auf $\gamma(\partial[0,1]^3)$. Zeigen Sie für die Divergenz div $F = D_1F_1 + D_2F_2 + D_3F_3$, dass

$$\int_{M} \operatorname{div} F d\lambda_3 = \int_{M} \operatorname{div} G d\lambda_3.$$

Hinweis:

Wenden Sie den Satz von Stokes auf $\omega = F_1 dx_2 \wedge dx_3 + F_2 dx_3 \wedge dx_1 + F_3 dx_1 \wedge dx_2$ an.

Aufgabe 3

Sei $U \subseteq \mathbb{R}^n$ offen. Zwei 1-Flächen (also Kurven) γ und σ mit gleichen Anfangsund Endpunkten heißen homotop in U, falls es eine 2-Fläche F gibt mit

$$F(0,t) = \gamma(t), \quad F(1,t) = \sigma(t), \quad F(t,0) = \sigma(0) = \gamma(0) \text{ und } F(t,1) = \sigma(1) = \gamma(1)$$

für alle $t\in[0,1]$. Zeigen Sie für alle geschlossenen 1-Formen $\omega\in\Omega^1_1(U)$ die Wegunabhängikeit $\int\limits_{\gamma}\omega=\int\limits_{\sigma}\omega.$

Aufgabe 4

Seien $M \subseteq \mathbb{R}^m$ eine n-dimensionale randlose C^k -Mannigfaltigkeit und $x \in M$ Zeigen Sie

$$T_x M = \{ \varphi'(0) : \varphi :] - \varepsilon, \varepsilon [\to M \text{ stetig differenzierbar mit einem } \varepsilon > 0 \}.$$

Stimmt das auch, wenn M berandet ist?

Aufgabe 5

Seien $K_3 = \{x \in \mathbb{R}^3 : ||x|| \le 1\}$ und $S^2 = \{x \in \mathbb{R}^3 : ||x|| = 1\}$, wobei $K_3 = \gamma([0, 1]^3)$ zum Beispiel mit γ wie in der Aufgabe T2 vom Blatt 10 (Insbesondere

hängen dann die Integrale $\int\limits_{\partial\gamma}\omega$ nur von $\omega|_{S^2}$ ab.). Zeigen Sie folgenden Satz von

Brouwer:

Es gibt kein $F \in C^2(U, \mathbb{R}^3)$ mit einer offenen Obermenge $U \subseteq K_3$, so dass $F(K_3) \subseteq S^2$ und $F|_{S^2} = id$.

Mit dieser Aussage kann man übrigens relativ leicht den berühmten Brouwerschen Fixpunktsatz folgern. Dieser besagt, dass jede stetige Abbildung der volldimensionalen Kugel in sich selbst einen Fixpunkt besitzt.

Hinweis:

Folgern Sie aus $0 = \nabla ||F||^2$, dass det $\nabla F = 0$ auf K_3 . Wenden Sie anschließend den Satz von Stokes auf $\omega = F_1 \wedge dF_2 \wedge dF_3$ an.

Aufgabe 6

Sei $M \subseteq \mathbb{R}^n$ eine (n-1)-dimensionale C^k -Mannigfaltigkeit, so dass es eine stetige Abbildung $\nu: M \to \mathbb{R}^n$ gibt mit $\|\nu(x)\| = 1$ und $\nu(x) \perp T_x M$ für alle $x \in M$. Zeigen Sie, dass M eine orientierbare Mannigfaltigkeit ist.

Hinweis:

Für jedes $x \in M$ ergänze man $\nu(x)$ zu einer ONB $\{\nu(x), m_1(x), ..., m_{n-1}(x)\}$ des \mathbb{R}^n mittels Vektoren aus T_xM und zeige, dass $\mu(x) = or(m_1(x), ..., m_{n-1}(x))$ eine Orientierung definiert.

Aufgabe 7

Formulieren Sie das AWP $f''+f=\frac{1}{\cos(t)}, f(0)=f'(0)=0$ als ein 2-dimensionales System erster Ordnung und lösen Sie dieses mittels Variation der Konstanten.