Analysis einer und mehrerer Veränderlicher Blatt 5

Aufgaben für die Tutorien in der Woche 23. - 27. Juni 2014

T 16

Berechnen Sie (für geeignete $a, b \in \mathbb{R}$) folgende Integrale

(a)
$$\int_{a}^{b} \tan(x) dx$$
,

(b)
$$\int_{a}^{b} \tan^{2}(x) dx$$
,

(c)
$$\int_{1}^{e} \frac{\log(t)}{t} dt$$
,

(d)
$$\int_a^b \frac{1}{\sin(x)} dx$$
 (Tipp: $\sin(x) = \sqrt{1 - \cos^2(x)}$ für $\sin(x) > 0$).

T 17

(a) Für $t \in]-\pi,\pi[$ sei $x=\tan(t/2).$ Zeigen Sie

$$\frac{2x}{1+x^2} = \sin(t)$$
 und $\frac{1-x^2}{1+x^2} = \cos(t)$

(b) Finden Sie eine Stammfunktion von $f(t) = \frac{1}{1+\sin(t)}$ auf einem geeigneten Intervall.

T 18

Bestimmen Sie die Partialbruchzerlegung von

$$R(x) = \frac{x^4}{(x^2+1)(x-1)^2}$$

sowie Stammfunktionen von Rauf] $-\infty,1[$ und]1, $\infty[.$

T 19

- (a) Zeigen Sie, dass $\frac{\sin(x)}{\sqrt{x}}$ an ∞ integrierbar ist.
- (b) Für welche $p \in \mathbb{R}$ ist $f(x) = \sin(x^p)$ an ∞ integrierbar?
- (c) Folgt aus der Integrierbarkeit von f an ∞ , dass $f(x) \to 0$ für $x \to \infty$?

T 20

Für welche p > 0 konvergiert die Reihe

$$\sum_{n=3}^{\infty} \frac{1}{n \log(n) (\log(\log(n)))^p}?$$

Wie verhält sich die Reihe für p = 1?

Hausaufgaben. Abgabe bis Dienstag, 1.7.14 um 12 Uhr, Übungskasten 5

Am Dienstag, 24.06.14 und am Dienstag, 01.07.14 finden die Übungen in E 51 statt.

H 21

Berechnen Sie Stammfunktionen (auf geeigenten Intervallen) folgender Funktionen

(a)
$$f(x) = \log(x)/x^{\beta}$$
 für $\beta \in \mathbb{C}$,

(b)
$$g(y) = \frac{\sin(y)}{1 + \cos(y)}$$
,

(c)
$$h(t) = \frac{1}{1 + \cos(t)}$$
,

(d)
$$i(x) = \frac{\log(\log(x))}{x}$$

H 22

(a) Berechnen Sie $\int_{0}^{1} x^{n} \log(x)^{m} dx$ für alle $n \in \mathbb{N}$ und $m \in \mathbb{N}_{0}$.

(b) Zeigen Sie, dass
$$\int_{0}^{1} x^{x} dx = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{n}}$$
.

(Tipp: $x^x = \exp(x \log(x))$ und die Exponentialreihe konvergiert auf kompakten Intervallen gleichmäßig, Satz 2.3(a)).

H 23

Bestimmen Sie die Partialbruchzerlegung von

$$R(x) = \frac{(x+1)^5}{(x^2+1)(x-1)^3}$$

(Nur Mut, am Ende kommen angenehme Koeffizienten heraus.)

H 24

Für
$$n \in \mathbb{N}_0$$
 sei $I_n = \int_{-\infty}^{\infty} x^n e^{-x^2/2} dx$.

- (a) Zeigen Sie, dass diese uneigentlichen Integrale existieren.
- (b) $I_n = 0$ für ungerade $n \in \mathbb{N}$.
- (c) Finden Sie eine Rekursion für I_{2n} .

H 25

- (a) Zeigen Sie für $f \in C^1([a,b])$, dass die sogenannten Fourier-Koeffizienten $\hat{f}(n) = \int\limits_a^b f(x)e^{-inx}dx$ für $|n| \to \infty$ gegen 0 konvergieren.
- (b) Zeigen Sie, dass die Aussage in (a) auch für Treppenfunktionen sowie für Regelfunktionen gilt.