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Abstract. We consider the approximation of the convolution product of not

necessarily identical probability distributions qjI+pjF , (j = 1, . . . , n), where, for

all j, pj = 1 − qj ∈ [0, 1], I is the Dirac measure at point zero, and F is a prob-

ability distribution on the real line. As an approximation, we use a compound

binomial distribution, which is defined in a one-parametric way: the number of

trials remains the same but the pj are replaced with their mean or, more gen-

erally, with an arbitrary success probability p. We also consider approximations

by finite signed measures derived from an expansion based on Krawtchouk poly-

nomials. Bounds for the approximation error in different metrics are presented.

If F is a symmetric distribution about zero or a suitably shifted distribution, the

bounds have a better order than in the case of a general F . Asymptotic sharp

bounds are given in the case, when F is symmetric and concentrated on two

points.

Key words and phrases: Compound binomial distribution, Kolmogorov norm,

Krawtchouk expansion, concentration norm, one-parametric approximation, sharp

constants, shifted distributions, symmetric distributions, total variation norm.
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1. Introduction

1.1 The aim of the paper

Binomial approximations are usually applied to the sums of independent or dependent

indicators (see Ehm (1991), Barbour et al. (1992, Section 9.2), Soon (1996), Roos (2000),

Čekanavičius and Vaitkus (2001), Choi and Xia (2002)). The present paper is devoted to

a more general situation of a generalized Poisson binomial distribution, which is defined

as the convolution product of not necessarily identical probability distributions qjI +

pjF , (j ∈ {1, . . . , n}, n ∈ N = {1, 2, . . .}) on the set of real numbers R. Here, for

all j, pj = 1 − qj ∈ [0, 1], Iu is the Dirac measure at point u ∈ R, I = I0, and F is

assumed to be a probability distribution on R. As approximations, we choose a compound

binomial distribution, which is defined in a one-parametric way: the number n of trials

remains the same but the pj are replaced with their mean or, more generally, with an

arbitrary success probability p. We also consider the approximation with a suitable finite

signed measure, which can be derived from a related expansion based on Krawtchouk

polynomials. Bounds for the distance in several metrics are given. It turns out that, if F is

a symmetric distribution about zero or a suitably shifted distribution, i.e. the convolution

of a distribution G on R with an adequate Dirac measure Iu at point u ∈ R, the accuracy

of approximation will be increased. In the compound Poisson approximation, similar

investigations were made by Le Cam (1965) and Arak and Zăıtsev (1988). In the case

of a symmetric distribution F concentrated on two points, we present bounds containing

asymptotic sharp constants.

Remarkably, the main body of research in compound approximations is restricted

to compound Poisson laws or finite signed measures derived from related expansions.

It seems that compound binomial approximation hardly attracted any attention. It

is evident that, in contrast to approximations by (compound) Poisson laws, the ones

by (compound) binomial distributions are exact when pj = p for all j. As can be seen

below, the bounds for the distances given in this paper reflect this fact. It should be noted

that the one-parametric binomial approximation is not the only one in this context. In

Barbour et al. (1992, Section 9.2), it was proposed to use the two-parametric binomial

approximation, matching two moments of the approximated law. The two-parametric

approach can also be extended to the compound case and will be discussed in a separate

paper (see Čekanavičius and Roos (2004)).

In this paper, a combination of different techniques is used. The main arguments are

the Krawtchouk expansion from Roos (2000) and several norm estimates. It should be

mentioned that the proofs of some of these norm estimates are rather complicated and

require the deep Arak-Zăıtsev method (cf. Čekanavičius (1995) and Arak and Zăıtsev

(1988)).

The structure of the paper is the following. In the next subsection, we proceed with

some notation. In Section 2, we discuss important known facts. Section 3 is devoted to
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the main results, the proofs of which are given in Section 4. In an appendix, we collect

some important facts on the Krawtchouk expansion.

1.2 Some notation

For our purposes, it is more convenient to formulate all results in terms of distri-

butions or signed measures rather than in terms of random variables. Let F (resp. S,

resp. M) denote the set of all probability distributions (resp. symmetric probability dis-

tributions about zero, resp. finite signed measures) on R. All products and powers of

finite signed measures in M are defined in the convolution sense; for W ∈ M, set W 0 = I.

The exponential of W is defined by the finite signed measure

exp{W} =
∞∑

m=0

W m

m!
.

Let W = W + − W− denote the Hahn-Jordan decomposition of W . The total variation

norm ‖W‖, the Kolmogorov norm |W |, and the Lévy concentration norm |W |h of W ∈ M
are defined by

‖W‖ = W +(R) + W−(R),

|W | = sup
x∈R

|W ((−∞, x])|,

|W |h = sup
x∈R

|W ([x, x + h])|, (h ∈ [0, ∞)),

respectively. Note that the total variation distance ‖F − G‖ between F, G ∈ F is equal

to 2 supA |F (A) − G(A)|, where the supremum is over all Borel measurable sets A ⊆ R.

It should be mentioned that | · |0 is only a seminorm on M, i.e. it may happen that,

for non-zero W ∈ M, |W |0 = 0. But if we restrict ourselves to finite signed measures

concentrated on the set of all integers Z, then | · |0 is indeed a norm, the so-called local

norm, that coincides with the ℓ∞-norm of the counting density of the signed measure

under consideration. We denote by C positive absolute constants, which may differ from

line to line. Similarly, by C(·) we denote constants depending on the indicated argument

only. By a condition of the type f(x) ≤ C < 1 for a real-valued function f(x) of some

values x, we mean that a positive absolute constant C < 1 exists such that, for all x,

f(x) ≤ C. In other words, f(x) is bounded away from 1 uniformly in x. For x ∈ R, let

⌊x⌋ be the largest integer not exceeding x. We always let 00 = 1,

n ∈ N, pj ∈ [0, 1], qj = 1 − pj , (j ∈ {1, . . . , n}),
p = (p1, . . . , pn), pmax = max

1≤j≤n
pj, pmin = min

1≤j≤n
pj, δ = pmax − pmin,

p =
1

n

n∑

j=1

pj , q = 1 − p, λ = np, p ∈ [0, 1], q = 1 − p,

γk(p) =

n∑

j=1

(p − pj)
k, γk = γk(p), (k ∈ N),

3



η(p) = 2γ2(p) + (γ1(p))2, θ(p) =
η(p)

2npq
, θ = θ(p) =

γ2

np q
,

GPB(n, p, F ) =
n∏

j=1

(qjI + pjF ), Bi(n, p, F ) = (qI + pF )n, (F ∈ F).

Note that γk(p), η(p), and θ(p) not only depend on p but also on p. For brevity, this

dependence will not be explicitly indicated. The binomial distribution with parameter n

and p is defined by Bi(n, p) = Bi(n, p, I1).

Using the above notation, the goal of the present paper can be summarized as fol-

lows: Give bounds for the accuracy of approximation of the generalized Poisson binomial

distribution GPB(n, p, F ), (F ∈ F) by the compound binomial law Bi(n, p, F ) and by

related finite signed measures, which are defined in Subsection 2.2 below.

2. Known facts

2.1 Ehm’s result

In what follows, we discuss some known results in the one-parametric binomial

approximation to the Poisson binomial distribution GPB(n, p, I1). By using Stein’s

method, Ehm (1991) proved that the total variation distance d1 = ‖GPB(n, p, I1) −
Bi(n, p)‖ between GPB(n, p, I1) and the binomial distribution Bi(n, p) can be estimated

in the following way:
1

62
min{θ, γ2} ≤ d1 ≤ 2 min{θ, γ2}.(2.1)

From (2.1), we see that d1 and min{θ, γ2} have the same order. In estimating d1, the

quantities θ and γ2 play a different rôle. First note that, as has been shown in Roos

(2000, Remark on page 259), we have

θ ≤ δ min
{

1,
δ

4p q

}
.(2.2)

In particular, we have θ ≤ 1. Since θ ≤ δ ≤
∑n

j=1 |p − pj | ≤ 2np q (cf. Roos (2000, page

263)), we obtain
θ2

2
≤ min{γ2, θ} ≤ θ,

which implies that the distance d1 is small if and only if θ is small, or, since θ = 1 −
(np q)−1

∑n
j=1 pjqj , if and only if the quotient of the variances of the involved distributions

is approximately equal to one (see also Ehm (1991, Corollary 2)). Therefore, looking at

(2.1), the upper bound θ is much more important than the γ2. To say it using the

terminology by Barbour et al. (1992, page 5), the factor θ/γ2 = (np q)−1 is a magic

factor.

2.2 Approximations using the Krawtchouk expansion

In Roos (2000), the same binomial approximation problem as in Subsection 2.1 was

investigated. In fact, by using generating functions, an expansion based on Krawtchouk
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polynomials was constructed. In what follows, we collect some basic facts about this

expansion needed later on. Further informations can be found in the appendix below. In

Theorem 1 of the above mentioned paper, it was shown that, for arbitrary p ∈ [0, 1] and

F = I1, the identity

GPB(n, p, F ) =

n∑

j=0

aj(p) (F − I)j (qI + pF )n−j(2.3)

holds, where the Krawtchouk coefficients aj(p) are given by

a0(p) = 1, a1(p) = −γ1(p), a2(p) =
1

2
((γ1(p))2 − γ2(p)),

a3(p) = −1

6
(γ1(p))3 +

1

2
γ1(p)γ2(p) − 1

3
γ3(p),

and, for j ∈ {1, . . . , n},

aj(p) = −1

j

j−1∑

k=0

ak(p) γj−k(p).(2.4)

Note that the coefficients aj(p) not only depend on p but also on p. Alternatively, by (2.4),

aj(p) can be considered as a function of (γ1(p), . . . , γj(p)). It is evident that (2.3) also

holds for a general distribution F ∈ F . Taking into account (2.3), as an approximation

of GPB(n, p, F ), it is useful to choose the finite signed measure

Bi(n, p, F ; s) =

s∑

j=0

aj(p) (F − I)j (qI + pF )n−j, (F ∈ F)(2.5)

with s ∈ {0, . . . , n} being fixed. Note that Bi(n, p, I1; 0) = Bi(n, p) and that, for s = 1

and p = p, we have Bi(n, p, I1; 1) = Bi(n, p). It should be mentioned that, in the

remaining cases, Bi(n, p, F ; s) also depends on p. In Theorem 2 of Roos (2000), it was

shown that

‖GPB(n, p, I1) − Bi(n, p, I1; s)‖ ≤ C1(s) min{θ(p), η(p)}(s+1)/2,(2.6)

|GPB(n, p, I1) − Bi(n, p, I1; s)|0 ≤ C2(s)
(θ(p))(s+1)/2

√
npq

,(2.7)

where, for (2.7), we have to assume that θ(p) ≤ C < 1. For p = p and s = 1, (2.6) has the

same order as Ehm’s upper bound (see (2.1)). Note that the constants C1(s) and C2(s)

can be given explicitly (see also Roos (2001a, Corollary 1)). In Roos (2000, Theorem 3),

it was proved that, if γ2 > 0, then, for W = GPB(n, p, I1) − Bi(n, p),

∣∣∣‖W‖ − θ

√
2

πe

∣∣∣ ≤ C θ v,(2.8)

∣∣∣|W |0 −
θ

2
√

2π np q

∣∣∣ ≤ C
θ√
np q

v,(2.9)

with

v = min
{

1,
|γ3|

γ2

√
np q

+
1

np q
+ θ

}
,
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where, for (2.9), we have to assume that θ < C < 1. For example, from (2.8), it follows

that ‖W‖ ∼
√

2/(πe) θ as θ → 0 and np q → ∞.

2.3 The Le Cam-Michel trick and its generalizations

As explained above, the purpose of the present paper is the investigation of the

changes in the accuracy of approximation, when, in GPB(n, p, I1) and Bi(n, p, I1; s)

from Subsection 2.2, I1 is replaced with a more general distribution F ∈ F . Thus we

deal with compound distributions, which, however, retain structures similar to the ones

presented in above. In fact, by the properties of the total variation norm,

sup
F∈F

‖GPB(n, p, F ) − Bi(n, p, F ; s)‖ = ‖GPB(n, p, I1) − Bi(n, p, I1; s)‖.(2.10)

Consequently, the supremum is achieved when F = I1. In the compound Poisson ap-

proximation, a similar property has been observed by Le Cam (1965, page 187) and later

rediscovered by Michel (1987, page 167). For the Kolmogorov norm and the concentra-

tion seminorm with h = 0, similar assertions hold. Moreover, generalizations with respect

to arbitrary finite signed measures are possible. Indeed, if W ∈ M is concentrated on

Z+ = {0, 1, 2, . . .} and if F1, F2, F3 ∈ F , where F2 and F3 are assumed to be concentrated

on [0, ∞) and on (0, ∞), respectively, then, as is easily shown,

∥∥∥
∞∑

m=0

W ({m})F m
1

∥∥∥ ≤ ‖W‖,(2.11)

∣∣∣
∞∑

m=0

W ({m})F m
2

∣∣∣ ≤ |W | sup
x∈R

∞∑

m=0

(F m
2 − F m+1

2 )((−∞, x]) ≤ |W |,(2.12)

∣∣∣
∞∑

m=0

W ({m})F m
3

∣∣∣
0
≤ |W |0 sup

x∈R

∞∑

m=0

F m
3 ({x}) ≤ |W |0.(2.13)

If, in (2.11)–(2.13), we set W = GPB(n, p, I1) − Bi(n, p, I1; s), we arrive at (2.10)

and the respective equalities for the Kolmogorov and local norms. In view of these

inequalities, one can expect some improvement in approximation accuracy only under

additional assumptions on F . Below, we will show that such improvements are possible,

when F is either suitably shifted or symmetric. Note that, with a few exceptions only,

we do not require the finiteness of moments of F .

2.4 Compound Poisson approximations by Le Cam, Arak and Zăıtsev

In this paper, we consider shifted and symmetric distributions F ∈ F . By a shifted

distribution F ∈ F , we mean F = IuG, where G ∈ F and u ∈ R. Then minimizing

the distance with respect to u, one can expect some improvement of the accuracy of

approximation. Shifted distributions play an important rôle in compound Poisson ap-

proximations, see, for example, Le Cam (1965) or Čekanavičius (2002). Indeed, Le Cam
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(1965) proved that

sup
G∈F

inf
u∈R

∣∣∣(IuG)n − exp{n(IuG − I)}
∣∣∣ ≤ C

n1/3
.(2.14)

Note that, as is easily shown, supG∈F |Gn − exp{n(G − I)}| is bounded away from zero,

which stresses the advantage of shifted distributions in this context. Similar estimates

hold for the symmetric distributions. More precisely, if in (2.14), we replace IuG with an

arbitrary symmetric distribution in S then the accuracy of compound Poisson approxima-

tion will be Cn−1/2. If we replace IuG with a symmetric distribution with non-negative

characteristic function then the accuracy of compound Poisson approximation will be

Cn−1. In general, both results are of the right order, see Arak and Zăıtsev (1988, Chap-

ter 5).

It is noteworthy that, in a similar context, Barbour and Choi (2004) used Stein’s

method for the approximation of the sum of independent integer valued random variables

by a translated Poisson distribution.

3. Main results

In what follows, let Bi(n, p, F ; s), (F ∈ F) be defined as in (2.5). Further, if not

stated otherwise, we assume that

p ∈ [0, 0.3].(3.1)

Theorem 3.1. Let s ∈ {0, . . . , n} and h ∈ [0,∞). Let us assume that

4θ(p)

3(1 − 2p)2
≤ C < 1.(3.2)

Then the following inequalities hold. For G ∈ F ,

inf
u∈R

|GPB(n, p, IuG) − Bi(n, p, IuG; s)| ≤ C(s)
(η(p))(s+1)/2

(np)(s+1)/2+(s+1)/(2s+4)
.(3.3)

For F ∈ S,

|GPB(n, p, F ) − Bi(n, p, F ; s)| ≤ C(s)
(η(p))(s+1)/2

(np)s+1
,(3.4)

|GPB(n, p, F ) − Bi(n, p, F ; s)|h ≤ C(s)
(η(p))(s+1)/2

(np)s+1
Q

1/(2s+3)
h(3.5)

× (| lnQh| + 1)6(s+1)(s+2)/(2s+3),

where we write Qh := Qh, np, F := | exp{32−1np(F − I)}|h.

Remark 1. (i) All approximations (3.3)–(3.5) are exact if pj = p for all j. In fact,

in this case, the upper bounds vanish, since η(p) = γ2 = 0. In particular, here, the

conditions (3.1) and (3.2) are superfluous (see also Remark (ii)).
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(ii) From (2.2), it follows that (3.2) is satisfied, when p = p ≤ 0.3 and δ ≤ 0.3, since,

in this case, we have

4θ

3(1 − 2p)2
≤ 0.4

(1 − 2p)2
min

{
1,

0.3

4p q

}
≤ 0.9.

In particular, if pmax ≤ 0.3 and p = p, then (3.2) is valid. In Theorem 3.1, the condition

p ∈ [0, 0.3] seems to be superfluous. It may suffice to assume that θ(p) ≤ C for a suitable

constant C. But we could not prove it.

(iii) The bounds (3.3)–(3.5) have a better order than (θ(p))(s+1)/2, which, in turn,

appears as the interesting part in the bounds from (2.6) and (2.10). Generally, for the

total variation distance, there seems to be no hope for upper bounds similar to (3.3)

and (3.4). Good upper bounds for the concentration norm in the context of shifted

distributions remain as an open question.

(iv) In contrast to (3.5), the estimates (3.3) and (3.4) are uniform in G ∈ F and

F ∈ S, respectively. However, due to the method of proof, we cannot say much about the

constants C(s). It should be mentioned, that, in order to obtain the explicit conditions

(3.1) and (3.2), in the proofs we often deal with explicit constants. But, since our goal

was to obtain a weak condition, the leading constants in the estimates turned out to be

quite large.

(v) It is easily shown that (3.4) follows from (3.5). However, (3.5) leads to estimates

of a better order than (3.4), if we use a Le Cam-type bound for the concentration function

of compound Poisson distributions; for example, see Roos (2004, Proposition 3), where

it was shown that, for t ∈ (0,∞), h ∈ [0, ∞), and an arbitrary distribution F ∈ F ,

| exp{t(F − I)}|h ≤ 1√
2e t max{F ((−∞, −h)), F ((h, ∞))}

.(3.6)

If, in Theorem 3.1, we set p = p and s = 1, we obtain the results with respect to the

compound binomial approximation.

Corollary 3.1. Let h ∈ [0,∞). Let us assume that

p ∈ [0, 0.3] and
4θ

3(1 − 2p)2
≤ C < 1.(3.7)

Then the following inequalities hold. For G ∈ F ,

inf
u∈R

|GPB(n, p, IuG) − Bi(n, p, IuG)| ≤ C
γ2

λ4/3
.

For F ∈ S,

|GPB(n, p, F ) − Bi(n, p, F )| ≤ C
γ2

λ2
,

|GPB(n, p, F ) − Bi(n, p, F )|h ≤ C
γ2

λ2
Q

1/5
h (| lnQh| + 1)36/5,

where Qh is defined as in Theorem 3.1.
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For symmetric distributions concentrated on Z\{0}, alternative estimates can be shown.

In particular, in this case, it is possible to derive a bound for the total variation norm,

which is comparable with (3.4) for the weaker Kolmogorov norm.

Theorem 3.2. Let the assumptions of Theorem 3.1 be valid. If F ∈ S is concen-

trated on the set Z \ {0}, then

‖GPB(n, p, F ) − Bi( n, p, F ; s)‖ ≤ C(s)
√

σ
(η(p))(s+1)/2

(np)s+1
,(3.8)

|GPB(n, p, F ) − Bi(n, p, F ; s)|h ≤ C(s) ⌊h + 1⌋ (η(p))(s+1)/2

(np)s+3/2
,(3.9)

where, for (3.8), we assume that F has finite variance σ2.

Remark 2. (i) The total variation bound (3.8) is slightly worse than (3.4); indeed,

the variance σ2 of F ∈ S concentrated on Z \ {0} cannot be smaller than one.

(ii) Under the assumptions of Theorem 3.2, an upper bound for the Kolmogorov norm

can be shown by using Tsaregradskii’s (1958) inequality. Unexpectedly, the resulting

bound is of worse order than (3.8) and is therefore omitted. To be more precise, here σ

appears instead of
√

σ from (3.8).

(iii) Inequality (3.9) exhibits a better order than the bound, which can be derived

from (3.5) and (3.6).

If, in Theorem 3.2, we set p = p and s = 1, we obtain the results regarding the compound

binomial approximation.

Corollary 3.2. Let the assumptions of Corollary 3.1 be valid. If F ∈ S is con-

centrated on the set Z \ {0}, then

‖GPB(n, p, F ) − Bi(n, p, F )‖ ≤ C
√

σ
γ2

λ2
,(3.10)

|GPB(n, p, F ) − Bi(n, p, F )|h ≤ C ⌊h + 1⌋ γ2

λ5/2
,

where, for (3.10), we assume that F has finite variance σ2.

In the previous results, the method of proof does not allow us to get reasonable estimates

of absolute constants. However, in the special case, when F is a symmetric distribution

concentrated on two points we are able to obtain asymptotic sharp constants.

Theorem 3.3. Let α ∈ (0,∞) and F = 2−1(Iα + I−α). Let

c
(1)
2 = 0.35007 . . . , c

(2)
2 = 0.06882 . . . , c

(3)
2 = 0.14960 . . .
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be defined as in Lemma 4.7 below. If the conditions in (3.7) are satisfied, then

∣∣∣‖GPB(n, p, F ) − Bi(n, p, F )‖ − c
(1)
2

γ2

λ2

∣∣∣ ≤ C
γ2

λ5/2
,(3.11)

∣∣∣|GPB(n, p, F ) − Bi(n, p, F )| − c
(2)
2

γ2

λ2

∣∣∣ ≤ C
γ2

λ5/2
,(3.12)

∣∣∣|GPB(n, p, F ) − Bi(n, p, F )|0 − c
(3)
2

γ2

λ5/2

∣∣∣ ≤ C
γ2

λ3
.(3.13)

Remark 3. (i) In view of (3.8), one may ask why, in (3.11), the variance σ2 = α2 of F

does not occur. The answer is simply that, similar to (2.10), we may assume that α = 1.

(ii) From (3.11), it follows that, under the assumptions of Theorem 3.3,

‖GPB(n, p, F ) − Bi(n, p, F )‖ ∼ c
(1)
2

γ2

λ2
,(3.14)

as λ → ∞. Here, as usual, ∼ means that the quotient of both sides tends to one. In

particular, (3.14) is valid if we assume that p ≤ 0.3, θ → 0, and λ → ∞. Similar relations

hold for the Kolmogorov and local norms.

4. Proofs

4.1 Norm estimates

For several proofs below, we need the following well-known relations

‖V W‖ ≤ ‖V ‖ ‖W‖, |V W | ≤ |V | ‖W‖, |V W |h ≤ |V |h ‖W‖,(4.1)

|W | ≤ ‖W‖, |W |h ≤ ‖W‖,

where V, W ∈ M, h ∈ [0, ∞). Note that, if W (R) = 0, then max{|W |, |W |h} ≤ 2−1‖W‖.
As usual, for m ∈ Z+ and complex valued x ∈ C, let

(
x
m

)
=

∏m
k=1[(x − k + 1)/k].

Lemma 4.1. If F ∈ F , t ∈ (0,∞), j ∈ N, n ∈ Z+, p ∈ (0, 1), then

‖(F − I)2 exp{t(F − I)}‖ ≤ 3

te
,(4.2)

‖(F − I)j exp{t(F − I)}‖ ≤
√

j!

tj/2
,(4.3)

‖(F − I)j(qI + pF )n‖ ≤
(

n + j

j

)−1/2

(pq)−j/2(4.4)

≤
√

e j1/4
( n

n + j

)n/2( j

(n + j)pq

)j/2

.(4.5)

For a proof of (4.2) and (4.3), see Roos (2001b, Lemma 3) and Roos (2003, Lemma 4),

respectively. For (4.4) and (4.5), see Roos (2000, Lemma 4).
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Lemma 4.2. Let F ∈ F , n ∈ N, p ∈ [0, 1], r ∈ (−∞, 1), t = rnp, and

g(p) =
∞∑

k=2

(2p)k−2

k!
(k − 1) =

e2p(e−2p − 1 + 2p)

(2p)2
.

If p g(p) < (1 − r)/2, then

sup
F∈F

‖(I + p(F − I))n exp{−t(F − I)}‖ ≤
(
1 − 2p g(p)

1 − r

)−1

.

Proof. Let F ∈ F and y = np − t = (1 − r)np > 0. Then

T := ‖(I + p(F − I))n exp{−t(F − I)}‖
= ‖[(I + p(F − I)) exp{−p(F − I)}]n exp{y(F − I)}‖
= ‖[I + p2(F − I)2R]n exp{y(F − I)}‖,

with

R =

∞∑

k=2

(−p)k−2(1 − k)

k!
(F − I)k−2, ‖R‖ ≤ g(p).

Therefore, by using (4.3),

T ≤
n∑

j=0

(
n

j

)
p2j‖R‖j

∥∥∥(F − I)j exp
{y

2
(F − I)

}∥∥∥
2

≤
n∑

j=0

n!

(n − j)! yj
(2p2 g(p))j ≤

(
1 − 2p g(p)

1 − r

)−1

.

The lemma is proved. �

Lemma 4.3. Let G ∈ F , t ∈ (0,∞), and j ∈ N. Then

inf
u∈R

|(IuG − I)j exp{t(IuG − I)}| ≤ C(j)

tj/2+j/(2j+2)
.(4.6)

The estimate (4.6) was proved in Čekanavičius (1995, Theorem 3.1).

For the results with respect to symmetric distributions, we need the following result.

Lemma 4.4. Let F ∈ S, t ∈ (0,∞), j ∈ N, and h ∈ [0,∞). Then

|(F − I)j exp{t(F − I)}| ≤ C(j)

tj
,(4.7)

|(F − I)j exp{t(F − I)}|h ≤ C(j)

tj
Q̃

1/(2j+1)
h (| ln Q̃h| + 1)6j(j+1)/(2j+1),(4.8)

where Q̃h := Q̃h,t,F := | exp{4−1t(F − I)}|h.
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Proof. For h > 0, inequality (4.8) follows from the more general Theorem 1.1 in

Čekanavičius (1995). Note that, in this theorem, there is a misprint in the power of

the last factor (compare the statement of the theorem in the paper with its Equation

(4.25)). For h = 0, (4.8) is valid as well, since, for W ∈ M and h ∈ [0, ∞), |W |h ≤
lim infr↓h |W |r and h 7→ Q̃h is continuous from the right; see Hengartner and Theodorescu

(1973, Theorem 1.1.4). The estimate (4.7) follows from (4.8). �

In what follows, we need the Fourier transform Ŵ (x) =
∫

R
eixy dW (y), (x ∈ R) of a finite

signed measure W ∈ M. Here, i denotes the complex unit. It is easy to check that, for

V, W ∈ M and a, x ∈ R,

̂exp{W}(x) = exp{Ŵ (x)}, V̂ W (x) = V̂ (x)Ŵ (x), Îa(x) = eixa, Î(x) = 1.

Lemma 4.5. Let W ∈ M be concentrated on Z satisfying
∑

k∈Z
|k||W ({k})| < ∞.

Then, for all a ∈ R and b ∈ (0, ∞),

‖W‖2 ≤ 1 + bπ

2π

∫ π

−π

(
|Ŵ (x)|2 +

1

b2

∣∣∣ d

dx
(e−ixaŴ (x))

∣∣∣
2)

dx.(4.9)

Further,

|W |0 ≤
1

2π

∫ π

−π

|Ŵ (x)| dx.(4.10)

Proof. The proof of (4.9) can be found, for example, in Presman (1985, Lemma

on page 419). As was pointed out by Presman, this inequality would be equivalent to a

corresponding lemma by Esseen in the lattice case (cf. Ibragimov and Linnik (1971, page

29)). Inequality (4.10) is an immediate consequence of the well-known inversion formula

W ({k}) = (2π)−1
∫ π

−π
Ŵ (x)e−ikx dx, (k ∈ Z). �

Lemma 4.6. Let j ∈ Z+ and t ∈ (0, ∞). If F ∈ S is concentrated on the set

Z \ {0}, then

‖(F − I)j exp{t(F − I)}‖ ≤ 3.6 j1/4
√

1 + σ
( j

te

)j

, (j 6= 0),(4.11)

|(F − I)j exp{t(F − I)}|0 ≤ 2
(j + 1/2

te

)j+1/2

,(4.12)

where, for (4.11), we assume that F has finite variance σ2. If F = 2−1(Iα + I−α) for

some α ∈ (0, ∞), then

‖(F − I)j exp{t(F − I)}‖ ≤ j!

tj
.(4.13)
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Proof. The proof of (4.13) is easily done by using (4.3) and the fact that, under

the present assumptions,

F − I = −1

2
(I−α − I)(Iα − I).(4.14)

We now prove (4.12) by using (4.10). Let F ∈ S be concentrated on Z \ {0} and

W = (F − I)j exp{t(F − I)}. Then, for x ∈ R,

F̂ (x) = 2
∞∑

k=1

F ({k}) cos(kx), 1 − F̂ (x) = 4
∞∑

k=1

F ({k}) sin2
(kx

2

)
≥ 0,

Ŵ (x) = (F̂ (x) − 1)j exp{t(F̂ (x) − 1)}.
It is easy to check that, for each G ∈ F concentrated on Z, we have

1

2π

∫ π

−π

|Ĝ(x)|2 dx =

∞∑

k=−∞
(G({k}))2 ≤ |G|0.

Therefore, for arbitrary A > 0, applying (3.6), we obtain
∫ π

−π

exp{A(F̂ (x) − 1)} dx ≤ 2π
∣∣∣ exp

{A

2
(F − I)

}∣∣∣
0
≤ 2π

√
2

Ae
.(4.15)

Hence, using (4.10),

|W |0 ≤ 1

2π

∫ π

−π

(1 − F̂ (x))j exp{t(F̂ (x) − 1)} dx

=
1

2π

∫ π

−π

(1 − F̂ (x))j exp
{ tj

j + 1/2
(F̂ (x) − 1)

}
exp

{ t

2j + 1
(F̂ (x) − 1)

}
dx

≤ 1

2π
sup
x≥0

(
xj exp

{
− tjx

j + 1/2

})∫ π

−π

exp
{ t

2j + 1
(F̂ (x) − 1)

}
dx

≤ 2
(j + 1/2

te

)j+1/2

.

Inequality (4.12) is shown. We now prove (4.11) by using (4.9) with a = 0. The param-

eter b will be chosen later. By the same arguments as above, we derive
∫ π

−π

|Ŵ (x)|2 dx ≤ 4π
(2j + 1/2

2te

)2j+1/2

.(4.16)

Note that
∣∣∣ d

dx
F̂ (x)

∣∣∣ = 4
∣∣∣

∞∑

k=1

kF ({k}) sin
(kx

2

)
cos

(kx

2

)∣∣∣

≤ 4
( ∞∑

k=1

k2F ({k})
∞∑

j=1

F ({j}) sin2
(jx

2

))1/2

≤
√

2σ(1 − F̂ (x))1/2.

Hence, letting B = 1 − 0.18j−1, we obtain
∣∣∣ d

dx
Ŵ (x)

∣∣∣
2

≤
∣∣∣ d

dx
F̂ (x)

∣∣∣
2

(1 − F̂ (x))2j−2|j − t(1 − F̂ (x))|2 exp{2t(F̂ (x) − 1)}

≤ 2jtσ2
(j

t

)2j

sup
y≥0

(y2j−1(1 − y)2 exp{−2jBy}) exp{2t(1 − B)(F̂ (x) − 1)}.
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By elementary calculus, we see that the sup-term is bounded by 0.692/(je2j). With the

help of (4.15), we therefore get
∫ π

−π

∣∣∣ d

dx
Ŵ (x)

∣∣∣
2

dx ≤ 173

125
σ2t

( j

te

)2j
∫ π

−π

exp
{ 9 t

25 j
(F̂ (x) − 1)

}
dx

≤ 261

40
πσ2t

( j

te

)2j+1/2

.(4.17)

If t ≤ 0.108, then, since σ ≥ 1,

‖W‖2 ≤ 4j ≤ 22j−1(1 + σ)
(0.108

t

)2j

≤ (3.6)2
√

j(1 + σ)
( j

te

)2j

.

If t ≥ 0.108, then letting

b =
σ
√

t

π
√

0.108
and taking into account (4.16) and (4.17), we obtain

‖W‖2 ≤ 1 + bπ

2π

[
4π

(j + 1/4

te

)2j+1/2

+
261

40

πσ2 t

b2

( j

te

)2j+1/2]

≤ (3.6)2
√

j (1 + σ)
( j

te

)2j

,

where we used the simple inequality (1 + 1/(4j))2j+1/2 ≤ (5/4)5/2, (j ∈ N). The proof of

(4.11) is completed. �

Remark 4. By using Tsaregradskii’s (1958) inequality, it would be possible to derive

an estimate for |(F−I)j exp{t(F−I)}|, (j ∈ N) under the same assumptions as for (4.11).

However, the resulting bound would have been of worse order than the one in (4.11); see

also Remark 2(ii).

4.2 Asymptotically sharp norm estimates

In what follows, let Hj(z) be the Hermite polynomial of degree j ∈ Z+, satisfying,

for z ∈ R,

Hj(z) = j!

⌊j/2⌋∑

m=0

(−1)m(2z)j−2m

(j − 2m)! m!
,

hj(z) :=
1√
2π

dj

dzj
e−z2/2 =

(−1)j e−z2/2

2(j+1)/2
√

π
Hj

( z√
2

)
.(4.18)

Lemma 4.7. Let j ∈ Z+, t, α ∈ (0, ∞), and F = 2−1(Iα + I−α). Then

∣∣∣‖(F − I)j exp{t(F − I)}‖ −
2c

(1)
j

tj

∣∣∣ ≤ C(j)

tj+1/2
, (j 6= 0),(4.19)

∣∣∣|(F − I)j exp{t(F − I)}| −
2c

(2)
j

tj

∣∣∣ ≤ C(j)

tj+1/2
, (j 6= 0),(4.20)

∣∣∣|(F − I)j exp{t(F − I)}|0 −
2c

(3)
j

tj+1/2

∣∣∣ ≤ C(j)

tj+1
,(4.21)
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where

c
(1)
j =

1

2j+1

∫

R

|h2j(x)| dx,

c
(2)
j =

1

2j+1
sup
x∈R

|h2j−1(x)|,(4.22)

c
(3)
j =

1

2j+1
sup
x∈R

|h2j(x)|.

In particular, we have

c
(1)
2 =

1

2

√
3

π
exp

{
−3 −

√
6

2

}(√
3 −

√
6 + e−

√
6

√
3 +

√
6
)
,(4.23)

c
(2)
2 =

1

8

√
3

π
exp

{
−3 −

√
6

2

}√
3 −

√
6,(4.24)

c
(3)
2 =

3

8
√

2π
.(4.25)

The constants given in (4.23)–(4.25) are important for Theorem 3.3. For the proof of

Lemma 4.7, we need the following result, which is a slight but trivial improvement of

Proposition 3 in Roos (1999).

Lemma 4.8. Let j ∈ Z+, S be a set, and b : (0,∞) × R × S −→ R be a bounded

function. Then, for t ∈ (0, ∞),

sup
x∈S

sup
z∈R

[
(1 + z2)

∣∣∣t(j+1)/2∆jpo(⌊t + z
√

t + b(t, z, x)⌋, t) − (−1)jhj(z)
∣∣∣
]
≤ C(j)√

t
,

where ∆0po(·, t) = po(·, t) denotes the counting density of the Poisson distribution with

mean t and, for m ∈ Z and j ∈ N,

∆jpo(m, t) = ∆j−1po(m − 1, t) − ∆j−1po(m, t).

Proof of Lemma 4.7. We may assume that t ≥ 1. In view of (4.14) and the

simple relation

(F − I)j exp{t(F − I)} =

∞∑

m=0

∆jpo(m, t) F m, (F ∈ F)

(cf. Roos (1999, Lemma 1)), we see that, letting t0 = t/2,

(F − I)j exp{t(F − I)} =
1

(−2)j
(I−α − I)j exp

{ t

2
(I−α − I)

}
(Iα − I)j exp

{ t

2
(Iα − I)

}

=
1

(−2)j

∞∑

m1=0

∞∑

m2=0

∆jpo(m1, t0) ∆jpo(m2, t0)I(m2−m1)α

=
1

(−2)j

∑

k∈Z

∞∑

m=0

∆jpo(m, t0) ∆jpo(k + m, t0)Ikα.
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This gives

T (1) := ‖(F − I)j exp{t(F − I)}‖

=
1

2j

∑

k∈Z

∣∣∣
∞∑

m=0

∆jpo(m, t0) ∆jpo(k + m, t0)
∣∣∣.

By using simple transformations, we obtain

T (1) =

√
t0

2j

∫

R

∣∣∣
∫

R

∆jpo(⌊t0 + y1

√
t0⌋, t0)∆

jpo(⌊t0 + z
√

t0 + b0⌋, t0) dy1

∣∣∣dy2,

where b0 = ⌊y2⌋ − y2 ∈ (−1, 0] and z = y1 + y2/
√

t0. From Lemma 4.8, it follows that

∆jpo(⌊t0 + y1

√
t0⌋, t0) =

(−1)jhj(y1)

t
(j+1)/2
0

+
b1

(1 + y2
1)t

(j+2)/2
0

,

∆jpo(⌊t0 + z
√

t0 + b0⌋, t0) =
(−1)jhj(z)

t
(j+1)/2
0

+
b2

(1 + z2)t
(j+2)/2
0

,

where b1 and b2 are functions of (j, t0, y1) and (j, t0, z, b0), resp., with max{|b1|, |b2|} ≤
C(j). Combining this with the above, we arrive at

T (1) =

√
t0

2j
(R0 + R1),

where

R0 =

∫

R

∣∣∣
∫

R

hj(y1) hj(z)

tj+1
0

dy1

∣∣∣dy2 =

∫

R

∣∣∣
∫

R

hj(y1) hj(y1 + y2)

t
j+1/2
0

dy1

∣∣∣dy2

and R1 is a quantity satisfying

|R1| ≤
∫

R

∫

R

|b2| |hj(y1)|
(1 + z2)t

j+3/2
0

dy1dy2 +

∫

R

∫

R

|b1| |hj(z)|
(1 + y2

1)t
j+3/2
0

dy1dy2

+

∫

R

∫

R

|b1 b2|
(1 + y2

1)(1 + z2)tj+2
0

dy1dy2

= R2 + R3 + R4, say.

It is easily shown that

R2 ≤
C(j)

tj+1
0

, R3 ≤
C(j)

tj+1
0

, R4 ≤
C(j)

t
j+3/2
0

,

giving |R1| ≤ C(j)t
−(j+1)
0 , since t0 = t/2 ≥ 1/2. This implies that

∣∣∣T (1) −
2c

(1)
j

tj

∣∣∣ ≤ C(j)
√

t0 |R1| ≤
C(j)

tj+1/2
,

where

c
(1)
j =

1

2

∫

R

∣∣∣
∫

R

hj(y1) hj(y1 + y2) dy1

∣∣∣dy2.
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Similarly,

T (2) := |(F − I)j exp{t(F − I)}|

=
1

2j
sup
k∈Z

∣∣∣
∞∑

m=0

∆jpo(m, t0) ∆j−1po(k + m, t0)
∣∣∣

=

√
t0

2j
sup
y2∈R

∣∣∣
∫

R

∆jpo(⌊t0 + y1

√
t0⌋, t0)∆

j−1po(⌊t0 + z
√

t0 + b0⌋, t0) dy1

∣∣∣,

T (3) := |(F − I)j exp{t(F − I)}|0

=
1

2j
sup
k∈Z

∣∣∣
∞∑

m=0

∆jpo(m, t0) ∆jpo(k + m, t0)
∣∣∣

=

√
t0

2j
sup
y2∈R

∣∣∣
∫

R

∆jpo(⌊t0 + y1

√
t0⌋, t0)∆

jpo(⌊t0 + z
√

t0 + b0⌋, t0) dy1

∣∣∣,

and ∣∣∣T (2) −
2c

(2)
j

tj

∣∣∣ ≤ C(j)

tj+1/2
,

∣∣∣T (3) −
2c

(3)
j

tj+1/2

∣∣∣ ≤ C(j)

tj+1
,

where

c
(2)
j =

1

2
sup
y2∈R

∣∣∣
∫

R

hj(y1) hj−1(y1 + y2) dy1

∣∣∣, c
(3)
j =

1√
2

sup
y2∈R

∣∣∣
∫

R

hj(y1) hj(y1 + y2) dy1

∣∣∣.

By partial integration, (4.18), and some simple substitutions, we see that, for y2 ∈ R,

k, ℓ ∈ Z+ with k ≥ ℓ, and m = k + ℓ,
∫

R

hk(y1) hℓ(y1 + y2) dy1 = (−1)ℓ

∫

R

hm(y1) h0(y1 + y2) dy1

=
(−1)k e−y2

2
/4

2m/2+1π

∫

R

e−x2

Hm

( x√
2
− y2

23/2

)
dx.

Using the well-known summation theorem for the Hermite polynomials

Hm(x1 + x2) =
1

2m/2

m∑

r=0

(
m

r

)
Hm−r(x1

√
2) Hr(x2

√
2), (x1, x2 ∈ R),

the orthogonality relation

∫

R

e−x2

Hr1
(x) Hr2

(x) dx =





√
π 2r1 r1!, if r1 = r2,

0, if r1 6= r2,
(r1, r2 ∈ Z+)

(see Szegö (1975, formulas (5.5.1) and (5.5.11), pages 105–106)), and (4.18), we obtain

∫

R

hk(y1) hℓ(y1 + y2) dy1 =
(−1)k e−y2

2
/4

2m+1
√

π
Hm

(
−y2

2

)
=

(−1)ℓ

2(m+1)/2
hm

(
− y2√

2

)
.

From the above, the equalities in (4.22) follow. The identities (4.23)–(4.25) are shown by

using straight forward calculus. This completes the proof of the lemma. �
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Lemma 4.9. Let j ∈ Z+, n ∈ N, 0 < p ≤ C < 1/2, α ∈ (0, ∞), F = 2−1(Iα +I−α),

and c
(1)
j , c

(2)
j , and c

(3)
j be defined as in Lemma 4.7. Then

∣∣∣‖(F − I)j(I + p(F − I))n‖ −
2c

(1)
j

(np)j

∣∣∣ ≤ C(j)

(np)j+1/2
, (j 6= 0),(4.26)

∣∣∣|(F − I)j(I + p(F − I))n| −
2c

(2)
j

(np)j

∣∣∣ ≤ C(j)

(np)j+1/2
, (j 6= 0),(4.27)

∣∣∣|(F − I)j(I + p(F − I))n|0 −
2c

(3)
j

(np)j+1/2

∣∣∣ ≤ C(j)

(np)j+1
.(4.28)

Proof. We may assume that np ≥ 1. We have

‖(F − I)j(I + p(F − I))n‖ = ‖(F − I)j exp{np(F − I)}‖ + R
(1)
1 ,

where

|R(1)
1 | ≤ ‖(F − I)j [(I + p(F − I))n − exp{np(F − I)}]‖

= ‖([(I + p(F − I)) exp{−p(F − I)}]n − I)(F − I)j exp{np(F − I)}‖
= ‖([I + R2]

n − I)(F − I)j exp{np(F − I)}‖

and

R2 = (I + p(F − I)) exp{−p(F − I)} − I

= −p2(F − I)2

∞∑

k=2

(−p(F − I))k−2

k!
(k − 1).

Therefore, letting g(p) be defined as in Lemma 4.2,

|R(1)
1 | ≤

n∑

r=1

(
n

r

)
(p2g(p))r‖(F − I)j+2r exp{np(F − I)}‖.

The latter norm term can be estimated by using (4.13). In fact, for r ∈ N,

‖(F − I)j+2r exp{np(F − I)}‖ ≤ ‖(F − I)j+2 exp{βnp(F − I)}‖ ‖F − I‖r−1

× ‖(F − I)r−1 exp{(1 − β)np(F − I)}‖

≤ (j + 2)! 2r−1 (r − 1)!

(βnp)j+2((1 − β)np)r−1
,

where β ∈ (0, 1) is arbitrary. This gives

|R(1)
1 | ≤ (j + 2)! p g(p)

βj+2(np)j+1

∞∑

r=1

(2p g(p)

1 − β

)r−1

.

Since g(1/2) = 1 and p ≤ C < 1/2, we can choose a suitable β ∈ (0, 1) such that

2p g(p)

1 − β
≤ C < 1.
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Hence |R(1)
1 | ≤ C(j)p(np)−(j+1). By (4.19), we obtain

∣∣∣‖(F − I)j(I + p(F − I))n‖ −
2c

(1)
j

(np)j

∣∣∣ ≤ |R(1)
1 | + C(j)

(np)j+1/2
≤ C(j)

(np)j+1/2
.

Hence, (4.26) follows. Similarly, by using (4.12),

|(F − I)j(I + p(F − I))n| = |(F − I)j exp{np(F − I)}| + R
(2)
1 ,

|(F − I)j(I + p(F − I))n|0 = |(F − I)j exp{np(F − I)}|0 + R
(3)
1 ,

where |R(2)
1 | ≤ C(j)p(np)−(j+1) and |R(3)

1 | ≤ C(j)p(np)−(j+3/2). By (4.20) and (4.21), we

obtain (4.27) and (4.28). The lemma is shown. �

4.3 Proofs of the theorems

Proof of Theorems 3.1 and 3.2. We first prove (3.3). Let G ∈ F , x = n/8,

and y = 3/4. By using (2.3), (4.1), and (2.11), we obtain

T0 := inf
u∈R

∣∣∣GPB(n, p, IuG) − Bi(n, p, IuG; s)
∣∣∣

= inf
u∈R

∣∣∣
n∑

j=s+1

aj(p) (IuG − I)j (qI + pIuG)n−j
∣∣∣

= inf
u∈R

∣∣∣ (IuG − I)s+1 exp{xp(IuG − I)}

∗ (I + p(IuG − I))n−⌊yn⌋ exp{−xp(IuG − I)}

∗
n∑

j=s+1

aj(p)(IuG − I)j−s−1(I + p(IuG − I))(⌊yn⌋+1)−(j+1)
∣∣∣

≤ T1 T2

n∑

j=s+1

|aj(p)|
(1 − 2p)j+1

‖(I1 − I)j−s−1(I + p(I1 − I))⌊yn⌋+1‖,

where ∗ denotes convolution,

T1 := inf
u∈R

∣∣∣(IuG − I)s+1 exp{xp(IuG − I)}
∣∣∣ ≤ C(s)

(np)(s+1)/2+(s+1)/(2s+4)

by Lemma 4.3, and

T2 := ‖(I + p(I1 − I))n−⌊yn⌋ exp{−xp(I1 − I)}‖ ≤ 1

1 − 1.2 g(0.3)
≤ 10.4

by Lemma 4.2 and the assumption p ≤ 0.3. In Roos (2000, Lemma 1) it was shown that,

for j ∈ {1, . . . , n},

|aj(p)| ≤
(η(p)

2j

)j/2 n(n−j)/2

(n − j)(n−j)/2
≤

(η(p) e

2j

)j/2

.
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Therefore,

T0 ≤ C(s)(η(p))(s+1)/2

(np)(s+1)/2+(s+1)/(2s+4)

×
[
1 +

n∑

j=s+2

( η(p) e

2(1 − 2p)2

)(j−s−1)/2 1

jj/2
‖(I1 − I)j−s−1(I + p(I1 − I))⌊yn⌋+1‖

]
,

where, in view of (4.5), we see that the term in brackets is bounded by

C
∞∑

j=0

( η(p)

2(1 − 2p)2(⌊yn⌋ + 1)pq

)j/2

≤ C.

Inequality (3.3) is shown. The proofs of (3.4), (3.5), (3.8), and (3.9) are quite similar to

the above one. The main difference is that we have to replace T1 with

T
(1)
1 = |(F − I)s+1 exp{xp(F − I)}| ≤ C(s)

(np)s+1
,(4.29)

T
(2)
1 = |(F − I)s+1 exp{xp(F − I)}|h ≤ C(s)

(np)s+1
Q

1/(2s+3)
h (| lnQh| + 1)κ,(4.30)

T
(3)
1 = ‖(F − I)s+1 exp{xp(F − I)}‖ ≤ C(s)

√
σ

(np)s+1
,(4.31)

T
(4)
1 = |(F − I)s+1 exp{xp(F − I)}|h ≤ C(s) ⌊h + 1⌋

(np)s+3/2
,(4.32)

respectively, where κ = 6(s + 1)(s + 2)/(2s + 3). Note that it is assumed that, for (4.29)

and (4.30), we have F ∈ S, and that, for (4.31) and (4.32), F ∈ S is concentrated on

Z \ {0}. Further, Lemmas 4.4 and 4.6 are used. The theorem is proved. �

Proof of Theorem 3.3. We may assume that α = 1 and that, in view of (2.6)

and (2.7), λ ≥ 1 and n ≥ 3. Then, by (2.3),

‖GPB(n, p, F ) − (qI + pF )n‖ =
γ2

2
‖(F − I)2(I + p(F − I))n‖ + R(1),

where, by using Lemma 4.6 and Theorem 3.2,

|R(1)| ≤ γ2

2
‖(F − I)2[(I + p(F − I))n−2 − (I + p(F − I))n]‖

+
|γ3|
3

‖(F − I)3(I + p(F − I))n−3‖ + ‖GPB(n, p, F ) − Bi(n, p, F ; 3)‖

≤ C
(pγ2

λ3
+

|γ3|
λ3

+
γ2

2

λ4

)

≤ C
γ2

λ3
.

The proof of (3.11) is easily completed by the help of Lemma 4.9. Inequalities (3.12) and

(3.13) are similarly shown. �
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Appendix A: The Krawtchouk expansion

We now give a review of some facts from Roos (2000). In Takeuchi and Take-

mura (1987a), the reader can find further informations concerning the Krawtchouk ex-

pansion of the distribution of the sum of possibly dependent Bernoulli random vari-

ables. Multivariate generalizations were derived in Takeuchi and Takemura (1987b) and

Roos (2001a). Let Sn be the sum of n ∈ N independent Bernoulli random variables

X1, . . . , Xn with success probabilities p1, . . . , pn, that is, the distribution of Sn is given

by L(Sn) = GPB(n, p, I1). Then (2.3) with F = I1 is equivalent to

P (Sn = m) =
n∑

j=0

aj(p) ∆jbi(m, n − j, p),(A.1)

where m ∈ Z+, p ∈ [0, 1] is arbitrary,

bi(m, k, p) = ∆0bi(m, k, p) =





(
k

m

)
pm qk−m, for m, k ∈ Z+, m ≤ k,

0, otherwise,

and

∆jbi(m, k, p) = ∆j−1bi(m − 1, k, p) − ∆j−1bi(m, k, p) for j ∈ N.

In fact, (A.1) and (2.3) can be derived from each other by means of the simple equality

k+j∑

m=0

∆jbi(m, k, p) zm = (1 + p(z − 1))k (z − 1)j

for j, k ∈ Z+, z ∈ C. The right–hand side of (A.1), resp. of (2.3), is called the Krawtchouk

expansion of L(Sn) with parameter p, and a0(p), . . . , an(p) are called the corresponding

Krawtchouk coefficients. With our assumptions, relation (3.5) of Takeuchi and Take-

mura (1987a) is similar to (A.1). For n, m ∈ Z+ and j ∈ {0, . . . , n}, we have

dj

dpj
bi(m, n, p) = n[j] ∆jbi(m, n − j, p),
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where n[j] = n!/(n − j)!, and hence, in view of (A.1), we see that

P (Sn = m) =

n∑

j=0

aj(p)

n[j]

dj

dpj
bi(m, n, p), (m ∈ Z+).

As was mentioned in Subsection 2.2, we have a0(p) = 1. In what follows, we give some

alternative formulae for a1(p), . . . , an(p). For this, we need the Krawtchouk polynomials

Kr(j; x, n, p) ∈ R[x] being orthogonal with respect to the binomial distribution. They

are defined by (see Szegö (1975, formula (2.82.2), page 36))

Kr(j; x, n, p) =

j∑

k=0

(
n − x

j − k

)(
x

k

)
(−p)j−k qk, (n, j ∈ Z+, x ∈ C).(A.2)

Then, for j ∈ {1, . . . , n},

aj(p) =
∑

1≤k(1)<...<k(j)≤n

j∏

r=1

(pk(r) − p),(A.3)

=

n∑

m=0

P (Sn = m) Kr(j; m, n, p)(A.4)

=

j∑

k=0

(
n − k

j − k

)
1

k!
(−p)j−k µ(k),(A.5)

=
1

2π αj

∫ 2π

0

e−ijx
n∏

k=1

(
1 + (pk − p)αeix

)
dx.(A.6)

where α ∈ (0,∞) is arbitrary and, for k ∈ {0, . . . , n},

µ(k) =

n∑

m=k

m[k] P (Sn = m)

denotes the kth factorial moment of Sn. The equalities (2.4) and (A.3)–(A.6) can be

derived with the help of the generating functions

n∑

j=0

aj(p) zj =
n∏

k=1

(1 + (pk − p)z), (z ∈ C)

and
n∑

j=0

Kr(j; m, n, p) zj = (1 + qz)m (1 − pz)n−m,(A.7)

for n, m ∈ Z+, n ≥ m, and z ∈ C. For (A.7), see Szegö (1975, formula (2.82.4), page 36).

In view of (A.4), we see that the Krawtchouk coefficients can be defined by using the

Krawtchouk polynomials. But the same is true for the differences ∆jbi(m, k, p). Indeed,

for m, k, j, r ∈ Z+ and p ∈ [0, 1], we have
(

k + j

j

)
(pq)j ∆jbi(m, k, p) = Kr(j; m, k + j, p) bi(m, k + j, p).(A.8)
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Using (2.4), (A.2), and (A.8), the counting densities of the signed measures Bi(n, p, I1; s)

(see (2.5)) can be derived. It turns out that, for m ∈ Z+, we have

Bi(n, p, I1; 1)({m}) = bi(m, n, p)
(
1 − γ1(p) (m − np)

npq

)

and, if n ∈ {2, 3, . . .},

Bi(n, p, I1; 2)({m}) = bi(m, n, p)
(
1 − γ1(p) (m− np)

npq

+
(γ1(p))2 − γ2(p)

2 n(n − 1) (pq)2

[
m2 − (1 + 2(n − 1)p)m + n(n − 1)p2

])
.

It is worth mentioning that, as one can expect, the first s moments of L(Sn) and

Bi(n, p, I1; s) coincide. This follows from the fact that, for s ∈ {0, . . . , n}, k ∈ {0, . . . , s},
and µ(k) as above,

n∑

m=k

m[k] Bi(n, p, I1; s)({m}) = µ(k).

Finally, note that the connection between Bi(n, p, F ; s), for F ∈ F , and Bi(n, p, I1; s)

is given by

Bi(n, p, F ; s) =

n∑

m=0

Bi(n, p, I1; s)({m})F m.

References
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Čekanavičius, V. (2002). On multivariate compound distributions, Teoriya Veroyatnostei

i ee Primeneniya, 47, 583–594; English translation in Theory of Probability and its

Applications, 47, 493–506;
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