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POISSON APPROXIMATION VIA THE CONVOLUTION
WITH KORNYA-PRESMAN SIGNED MEASURES

Bero Roos*

Abstract. We present an upper bound for the total variation dis-
tance between the generalized multinomial distribution and a finite
signed measure, which is the convolution of two finite signed measures,
one of which is of Kornya—Presman type. In the one-dimensional Pois-
son case, such a finite signed measure was first considered by Borovkov
and Pfeifer [1]. We give asymptotic relations in the one-dimensional
case, and, as an example, the i.i.d. record model is investigated. It
turns out that here the approximation is of order O(n~*(Inn)~(s+1)/2)
for s being a fixed positive integer, whereas in the approximation
with simple Kornya—Presman signed measures, we only have the rate
O((Inn)~(s+1/2),
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1. Introduction and main results. Let X, Xo, X3,... be a sequence
of independent Bernoulli random vectors in R¥ (k € N = {1,2,...}) with
probabilities

P{X; =e} =p;, €[0,1], P{X;=0}=1-p,; €[0,1]

forj€e Nandr € {1,...,k}, wherep; = Ele pjr and e, denotes the vector
in R¥ with entry 1 at position r and 0 otherwise. Let n € N. We assume
that A\, = Z?:l pjr > 0 for all r and that E;’il p? < o0.

In Roos [7], we used Kerstan’s method to prove a result concerning the
approximation of the distribution P of the sum S, = Z;‘:l X, by the
finite signed measures Ps, (s € N) of Kornya—Presman type (cf. [3], [4]),
which are concentrated on Zﬁ and have the generating functions

S

@) = X P = e (3 Gula)), (5= (a1,ez) € CF)
lezk m=1

where Z, = {0,1,2,...}, 2! = zilz,lc’c for I = (l1,...,lx) € Z%, and, for

m € {1,...,s} and z € CF,

()™t & -
Gm(2) = ———>_[H;(2)]", Hj(2) = pir(zr = 1), (j €N).
j=1 r=1

For relevant references concerning the Kornya—Presman expansion, see [7].

In the present paper, we give some results for the approximation of P5»
by the convolution ps = Ps x v, (s € N), where v, is the finite signed
measure with generating function

U ) = [IW-Hi), (e,
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where

S m
Ws(y) = (1 -y) eXp(Z%), (y € C)
m=1
is the Weierstrass prime function. Since y372; p;H < 00, U, (z) is an entire
function (see, e.g., [2, p. 169]). Therefore vs; and, in turn, ps are finite
signed measures. The idea behind the above expansion is that the generating
function of S,

. ZP{Sn—l}z—exp<ii_7

lezk Jj=lm=1

Vg, (

can be approximated by
S o o0
exp (3 Gl +3 z
m=1 : m=s

if s or n is large. The main difference between the approximants us and Ps
lies in the fact that, in contrast to P, us contains the information about
the whole sequence of distributions of the X;, (j € N). This can be a
disadvantage, but it turns out that the approximation by p, is much more
precise than the one by Ps;. Note that, in the one-dimensional Poisson case
k = s = 1, a result concerning the Kolmogorov metric has been given by
Borovkov and Pfeifer [1] (see Section 2 below).
In order to present the first result, we need further notation. Let

s €N, Po= max pj,  po= maxpj,  Po= ; 0ax i,
k p2 (s+1)/2
ks j(z) = [min {:1: )\J— Pj }] , (z €[0,00), 7 € N)
n R (o]
Bs(z) = Z";s,j(x)a Bs(z) = Z “s,j(x)a (z € [0,00)).
j=1 j=n+1
Observe that, for all z € [0, 00), Bs(w) < oo. For y € C, let
s+1
Vsly) =[1- Ws(y)]W-

Some properties of the function V; can be found in [7, Remark (a)]. For
z € R, let [z] denote the smallest integer > z. Let A,B € [0,1] with
A+ B=1. In this paper, we frequently deal with power series of the
type Q(z) = ZleZ’i a7, (¢ € R), which are absolutely convergent for all
z € CF. In particular, the order of summation may be chosen arbitrarily.
We write [|Q(2)|| = Zlez’j_ |g;| and use the easy fact that ||Q1(2)Q2(2)|| <
|Q1(2)]| |Q2(2)|| for two power series Q1(z) and Q2(2). Let ds (resp. d.) be
the total variation distance between P%* and P, (resp. p,). For example,
we have d, = 271|65(2)| with d5(2) = ¥g, (2) — ¥,,(2). In [7], we gave an
upper bound for ds. In the following theorem, we present our main result
for d.,.
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Theorem 1 Let

B (s+1)275/2, for odd s,
al(s) = (s + 1) 2V/R(s+1)]=5/2 for even s,

Vs(2po), c3(s,p0) =

Vs(2po)-

CQ(SaPO) = \/2_7T(8+].) s+ 1

If c3(s,p0) Py B1(2732471) < 1 and c3(1,p0) B1(2732B~1) < 1, then

d < ca(s, Po) Bs(cl (S)B_l)
T 1= cs(s,p0) B BL(273/2BN)]I/21[1 — e3(1,po) Br (2732 A7)

Remark 1 There exist positive constants C; and Cs(s), such that, if n is
sufficiently large and 5y < Cj, then, for all s, we have d’, < Cy(s)8s(1). Note
that Cj is indeed independent of s. Letting A = 0.9, we see that we can
set C1 = 0.3, since lim,_, ,31(1) = 0 and an ¢ > 0 exists, such that, for
po < 0.3 and A as above,

(2)

cs(1,po)B1(232A71) <

In Roos [7, Remark (c)], we have shown a similar assertion concerning
the total variation distance d, between P°» and P,: If py < 1/4, then
ds < C3(s)Bs(1), where Cs(s) is a constant depending only on s. In view of
limy, 00 Bs(1) = 0, we see that, in the case of n being large, the approxima-
tion by s is better than the one by Ps.

We now give a recursive formula for the counting density of ps. Observe
that 15({0}) = ¥, (0). For I = (I1,...,lx) € Z%, we use the standard multi-
index notation |I| =1 + -+ + I, and I! = [;!---[;!. Further, if additionally
te Z’_“H we write t <[ in the case that t, <[, for all . For a set M, 1,/(x)
is set to be one if z € M and zero otherwise.

Proposition 1 Let | € Z% with |I] > 1, [, = {t € Z% ||t| > 1; t <} and,
forte I,

(=)t e
e TTRRI) ol SIS S SR
’ Jj=lm=|t|—1 Jj=1m=max{s,|t|—1}
where \
m —[t|+1 tp
r—=
Then

{l} Z Ns

tEI
The proof of this proposition will be omitted, since it can easily be done by
using (1) and following the lines in the proof of Proposition 1 in [7].

2. The one-dimensional case. In this section, let always k = 1. For
I € N, let g = Z?leé- and & = 372,14 pé-. Instead of i, we simply
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write A. In the case s = 1, Borovkov and Pfeifer [1, Theorem 2| derived the
following asymptotic relation for the Kolmogorov distance

p1 = sup [P{Sp <z} — p1((—00,2])|

between P and pq: If Z;-";lpj = 00, then

~

P aren

In the following theorem, we show a similar but somewhat more precise
asymptotic relation for the total variation distance in the general case s € N.

(14 0(1)), (n — 00). (3)

Theorem 2 Let

1 astt
5 = ] d ] =—— —/2 R).
T. /R lps+1(z)| d, Ps+1(7) \/2_7rd$5+16 ) (z € R)

If 3521 pj = oo, then

4= 5 Isl?ian/? (1+o(z5)) @ @)

Similarly, under the same assumptions, the approximation by P, yields the
eTpPansion

Ts Q541

@::%&+Dxﬁﬂﬁ(1+o($%)> (n = o0). (5)

Note that simple calculations yield

_ 2(4+¢€%?)

4
- ~ 0.968, - atrer)
& V2me 2 V2red/?

4V6[y/3 = VBexp(v6/2) +1/3 + VB exp(=v6/2)]

T3 = \/ﬂe?’/Q ~ 2.801.
Example 1 In what follows, we consider the i.i.d. record model (cf. [1]). Let
Z1, Za, ... be independent and identically distributed random variables with
a continuous cumulative distribution function. We say that Z;, (j € N)
is a record of this sequence when Z; > max{Zi,...,Z;_1}, where we set
max ) = —oc. The corresponding record indicators X7, (j € N) are defined
by X; =1 when Z; is a record and X} = 0 otherwise. Rényi [5] has shown
that, here, the X’ form a sequence of independent Bernoulli random variables
with P{X} = 1} = 1/7, (j € N). Since X{ = 1 is a constant, we omit it
and set X; = X, (j € N). Now p; =1/(j +1), (j € N). Asn — oo,
we have G541 = s'n* + O(n~GtY)) and A = Inn + v+ O(n™'), where
v =0.5772... is Euler’s constant. In fact, the first asymptotic relation can
easily be deduced from the simple equality

RN #+z() oL
(n+1)* JG+1 = \m (1)

j=n+1 j=nt1J

~ 1.510,
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Therefore, by Theorem 2,

[+ O((nm) 1)
S 25(s + 1) ns (Inn)+1)/2’

7 (((s+1) —=1)[1 + O((Inn) +/3)]
2(s+ 1) (Inn)s+1)/2 ’

ds =

where ( is the Riemann zeta function. Here, we see that the approximation
error d is considerably smaller than dy;. The difference in the order is the
factor n™%. It should be mentioned, that an asymptotic relation for the
Kolmogorov distance between P5» and P; can be found (without proof)
in [1, formula (4)]. A proof can easily be obtained from the more general
relation (32) in Roos [6]. Observe that Borovkov and Pfeifer [1, Theorem 1]
derived another finite signed measure with the help of the gamma function
and gave an explicit bound of order O(n~2) for the Kolmogorov distance to

pPdn,

3. Proofs. For the proof of Theorem 1, we need the following two
lemmas.

Lemma 1 (c¢f. [7]) Let x € (0,00) and j € N. Then
WVs(=Hj(2))l = Vi(2p)),

) s+1 : 461(3) i I& 2
I () explar )] < [min {220 3B )

(s+1)/2

Lemma 2 We have
1
(1,p0) B1(273/2A-1)

Ky(B) = || s, (2) exp(-BGi(2))| < -
Proof. Using the expansion

n ()12
¥s, (2) exp(-B61(2)) = T [1 - T2 Vi (2 exp(a 6 2)
J=1

n

+ exp(AGi(2))

and the polynomial theorem, we are led to

] J
Application of Lemma 1 and Stirling’s formula yields the assertion. [ |
Proof of Theorem 1. We have

Ki(B)<1+Y 5 [52%(2@-)

[H;(2)]? exp (?Gl (z))

Ts,(2)

n . 2 s+1
ds(z) = lim [1 - H [1 - %Vs(_[{jﬂz(z))

U i _1sVs_Hia n\%
_ nlggo[_z Z H[( ) (S+1()+())

=1 1<i(1) < <i(j) <n =1

<
IA

< (Hiwene)H exp (261()) || 95, (2) exp(=B 612). 0
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By using the polynomial theorem, we obtain 2d; < K;(B) K2(B), where
K, (B) is defined as in Lemma 2 and
]j

— 1] «— Vs(2p)
Ky(B) = 2,—[ > o=
j=1 o s+l
Proceeding as in the proof of Theorem 1 in Roos [7], the proof is easily
completed. m
Proof of Theorem 2. We have

‘[Hi(z)]s“ exp (?Gl(z))

&
2d, ~ S5 - 1), ()| <Y+ Ve

where, using the properties of V5 (see [7, Remark (a)]),

X pit? [Vy(—pi(z —1)) —1
Yl — b; [Vs( pz(z )) ](z _ 1)s+2\Ian (z)
icn1 51 pi(z —1)
= O(ass2](z = 1)" s, (2)|)),
and Y> denotes the norm of the sum of terms over 5 = 2,3, ... in the expan-

sion (6), i.e. the summand for j = 1 has to be left out. As in the proof of
Theorem 1, one can now show that Y2 = O(&%,,/A**!). In view of formula
(32) in Roos [6], we see that, for [ € N,

I(z = )", (2)| = lI(z = ) exp(A(z = )| + O(ﬁ)’

whereas Proposition 4 in Roos [6] gives

T 1
I(z — 1)t exp(A(z — 1))|| = ﬁ + O(/\(l+1)/2>'

Combining the above estimates, we obtain (4). The proof of (5) is similar
and therefore omitted. [
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