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KERSTAN’S METHOD IN THE MULTIVARIATE POISSON
APPROXIMATION: AN EXPANSION IN THE EXPONENT

Bero Roos*

Abstract. The generalized multinomial distribution is approxi-
mated by finite signed measures, resulting from a Poisson type expan-
sion in the exponent. In the univariate case, this expansion was first
used by Kornya and Presman. We apply Kerstan’s method and present
a bound for the total variation distance with explicit constants.
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1. Introduction and results. Let S, be the sum of independent
Bernoulli random vectors X1,...,X, in R* (k,n € N = {1,2,...}) with
probabilities

P{X; =e} =pj, €[0,1], P{X; =0} =1-p; €0,1]

for j € {1,...,n} and r € {1,...,k}, where p; = Z,]lepj,,« and e, denotes
the vector in R* with entry 1 at position 7 and 0 otherwise. We assume that
Ar =201 pjr > 0 for all r.

In this paper, we are concerned with the approximation of the distribu-
tion P of S, by the finite signed measures Py, (s € N) concentrated on
Z’fr with the generating function

Up (2) = 3 P({I})7 = exp ( ) Gm(z)>, (2= (21,....2) € CH),
m=1

k
lezk

where Z, = {0,1,2,...}, 2! = zilzl,lc’C for | = (I1,...,lx) € Z¥, and, for
m € {1,...,s} and z € CF,

() & k
Gml2) == ST H ()™ Hy() = Yo pir(a—1), (G € {100,
j=1 r=1

An approximation by Py may be useful, since, for the probability generating
function Ug, (z) of P9, the following relations hold:

n o0

s, (2) = 3 P{S, =1} = [[ (1 + H;(2)) = exp ( 3 Gm<z>),
m=1

lezk j

if z € C* with max;<,< |2, — 1| < 1. Note that Ps(Z%) = ¥p (1) = 1.
In the univariate case k = 1, the first results concerning the above expan-
sion are due to Kornya [9] and Presman [11]. Therefore we call this expansion
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a Kornya—Presman expansion. It should be mentioned that Presman consid-
ered the binomial case with s = 2. Further results came from Kruopis [10]
and Barbour and Xia [2] (for k£ = 1 and s = 2), and Hipp [7] and Cekanavicius
[3] (for k¥ = 1 and arbitrary s). The multivariate Poisson case with s = 1
and arbitrary k was treated, for example, by Barbour [1], Deheuvels and
Pfeifer [5], and Roos [13, 14]. For this case, see also the references in [13].
The method of this paper is originally due to Kerstan [8], who considered
the case k = s = 1. Refinements of this method came from Daley and
Vere-Jones [4, pp. 297-299], Witte [15], and Roos [12, Kapitel 8], [14].
In what follows, further notation is needed. Let

k
seN, po= max p;, Po=, max P,

1<]<TL o ISJS
- k (s+1)/
Zmln{ Z } , (z € [0,00))
Observe that
w<hn Aula) < A) IR < i)Y 1)

For y € C, let

L y™ s+1
v =ew () Vi) =1 - (-
m=1

Note that (1—y)Us(y) is the prime function used by Weierstrass (see Hille [6,
p. 227]). For z € R, let [z] denote the smallest integer > z. Let A, B € [0, 1]
with A + B = 1. However, to get reasonable inequalities, it must often be
assumed that A, B € (0,1). In this paper we frequently deal with power
series of the type W (z) = Zlezk w?', (w; € R), which are absolutely con-

vergent for all z € C*. In particular, the order of summation may be cho-
sen arbitrarily. We write ||[W(z2)|| = ZleZﬁ |w;| and use the easy fact that

IW1(2)Wa(2)|| < |[W1i(2)]] ||[Wa(2)]| for two power series Wi(z) and Wa(z).
In the following theorem, we give an upper bound for the total variation
distance d, = 27| ¥g, (2) — Up,(2)|| between P and P.

Theorem 1 Let

 (s+1)278/2, for odd s,
ci(s) = (s + 1) 2'/2(s+1)]=5/2 for even s,
e2%[s/2 —1]!

s - Y V; 2 )
c2(s, po) Var(s 1) (2po)

625+1 S 2 m—2

c3(s,po) = s 1 Vs (2po), cs(s,po) = 4de Z %’

m=2

If c3(s,p0) g~ " B1(2732B~1) < 1 and ca(s,po) B1(2732 A1) < 1, then

ca(s,po) Bs(c1(s)B )
[1—ca(s,p0) p5 " B1(2732B=1)]I5/21[1 — eq(s,po) p1 (273247 1))

ds <
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Remarks. (a) Considering the properties of the Weierstrass prime function
(see Hille [6, p. 227]), we obtain V;(y) = 372, vs.: 4%, (y € C), where vs o = 1
and vs; > 0 for all 4 > 1. Therefore Vy(z) is increasing in = € [0, 00).
Further, for these z, we have Vi(z) < Us(z), since this is equivalent to

xs+1
1<U 1-—
< s($)< x+s+1>’

which follows from the observation that the term on the right-hand side is
increasing in = € [0,00). Note also that Us(z) < (1—z)~! for z € [0,1). The
inequalities given here can be used to obtain upper bounds for the constants
c2(s,po) and c3(s, po).

(b) In the case k = 1 and s = 2, inequality (2) substantially coincides, up
to constants, with the inequalities given by Presman [11, Assertion 1(a)] and
Kruopis [10, Theorem 3], respectively. If k is arbitrary and s = 1, we can
choose A =0 and B = 1, since ¢4(1,pg) = 0; in this case, (2) is comparable
with inequality (5) in Roos [14].

(c) There exist positive constants c¢5 and cg(s), such that, if py < ¢5, the
inequality ds < ¢g(s) (1) is valid for all s. Note that c; does not depend
on s. Indeed for s = 1, such an inequality with cg(1) = 8.8 was proved
in Roos [14, formula (6)] without any restrictions on po. Further, letting
A = 0.745 and using (1), (2), and Remark (a), it is easily shown that one
can choose ¢; = 1/4. Here it suffices to verify that an ¢ € (0,1) exists such
that, for all s € {2,3,...} and py < 1/4,

e3(s,p0)pi L B1(272B7Y) <1 —€ and  ey(s,po) f1 (273247 <1 —e

The special value for A was taken to obtain a large c5. It should be mentioned
that, in the general case s € N, it is not clear, whether the above condition
po < c¢5 can be dropped.

For a successful approximation, we have to compute the values of Ps.
In the following proposition, we give a recursive formula for the counting
density of Ps. Observe that P({0}) = ¥p_(0). For [ = (I1,...,l;) € Zk, we
use the standard multi-index notation |I| =13 + ... + [ and =10 0.
Further, if additionally ¢ € A %, we write £ < [ in the case that ¢, < lr for
all r.

Proposition 1 Let [ € Z¥ with ||| > 1, M, = {t € Z} |1 < |t| < s;t <1},

and
(—)1 1t & 5 (] — 1))
bt:fz ZT Hpjra (tEMl,s)-
: j=1 Ym=0
Then

P({1}) = |i

2. Proofs. For the proof of Theorem 1, we need the following lemma.
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Lemma 1 Let z € (0,00) and j € {1,...,n}. Then

IVs(=Hj(2)) |l = Vs (2p;), (3)

c k2 (s+1)/
172 explaGa ()] < min { SN S B0 g T

If ca(s,p0) B1 (2732 A1) < 1, then

o (461 *ZG ) < e maTIy ©

Proof. Let Vi(y) = 7, vs, ', (y € C) as in Remark (a) after Theorem 1.
Using the polynomial theorem, we obtain

T1 (A) =

i—|l]

00 k
= Z Vs,i Z L' H (_pj,rzr)lr
AN Gl U] et

i=0 ezt i<i
00 USZZ' Z 1k
- 2 [ 3 i L
eZ+ i=|l|
leading to (3): [[V/(=H;(2))l| = Vs(—H;((—1,...,-1))) = Vi(2p;). Now we

prove (4). For s € {1, 2} this 1nequahty was proved in Roos [14, formulas
(19) and (26)]. For even s, we use

1H;(2)* " exp(zGy(2))|| < HHj(z) <:cG1 >H

2zG (2 >
s+1

s/2
X

H]( )2 €xp <

and the fact that (4) also holds for s = 0 with ¢1(0) = 1/4 (see Roos [14,
formula (18)]). For odd s, the proof of (4) is similar. For the proof of (5),
we may assume that s > 2. Using (4) and Stirling’s formula, we obtain

- exp(ZZZI ™) explA G )
m=zj
= |lexp(AGi(z i%(i iQ m+1 ()™ exp <é G1(2)>>z
=EAV=F
< 1oy g3 3 P ey (?Gﬂz))\)i

1=1m=2

= ﬁ ca(s,po) —3/2 41 ' 1
S 1+Z [ e A2 A )} §1—04(3,p0),31(2—3/2A—1)’

if c4(s,p0) B1(273/2A1) < 1. The lemma is proved. ]
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Proof of Theorem 1. Consider the following expansion of the difference
of the generating functions of P and P;:

I ( (—H,(2))**

] ] ‘/s(—Hj(z))) - 1} Tp,(2)
J

W, (2) - Up, () = | ]

n

-y xRty

j {(—1)s1/;(—HZ-(V)(z))H_ ()1
J=1 1<i(1)<...<i(§)<n v=1

S

X exp (76‘1(2:))} exp (A Gi(z) + Gm(z )

m=2

By using the polynomial theorem, we obtain 2d; < Tj(A)Ty(B), where
T;(A) is defined as in Lemma 1 and
r

-

n

1) = 3 [$ LN o (2

Jj=1

n

J
2GR ey
Vi

IN

Hy(2)? exp (76*1 )

=1 1=1

<.

s(+ ) ZZI ( )S+leXp <§G1(Z)> H)
< 2eals ?332/38_011 Z]Sﬂ [03 5,P0) P 7151(2_3/2B_1)]j71.

For the latter inequality, we used (4) and Stirling’s formula. In view of (5)
and the relations

-V - v—1 __ — °
2 S g 2 = g 2 =
j=1 j=1 j=0
for z € [0,1) and v € Z, we see that (2) is valid. The proof is completed.m

Proof of Proposition 1. Using the binomial and the polynomial theorem
we obtain

[Up, (2)]7" D 1| Ps({1})2 = [¥p, (2)]” 122,—\11735

lezk

r=1 m=1 j=1 """
n k s—1 k m
= 3 (Xpirer) (- o)
j=1 “r=1 m=0 r=1
s=1 m k i+1
m _
S0 90 30 ol LY P oY
j=1m=01¢=0 t r=1
n s— s—1 m |l|' k l l
m—1i r
= -y > (Z.)Wp] (H(_p],r) )Z
J=1i=0 1eZk : |l|=i+1 m=i r=1
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- [EESCE () A

1€z 1<|l|<s ) J=1 “m=|l|-1 r=1

= Z bl Zl.

lezk :1<]l|<s

Therefore

YoP I =Tp(z) Y A= Y Y P({i—th) b2
lezk lezk :1<l|<s lezk : |I|>1 teMi,
Comparing the power series, the assertion is shown. ]
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