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total variation distance, our bounds have better order than those given
in the literature. In particular, our results hold under weaker moment
conditions for the mixing random variable. As an example, we consider
the approximation of the negative binomial distribution, which enables
us to prove the sharpness of a constant in the upper bound of the total
variation distance. The main tool is an integral formula for the differ-
ence of the counting densities of a Poisson distribution and a related
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1 Introduction

Mixed Poisson distributions are widely used in probability theory and statis-
tics. In the books by Haight (1967), Douglas (1980), Johnson et al. (1993), and
Grandell (1997), one can find an overview of applications and general prop-
erties. A large list of examples of mixed Poisson distributions can be found
in Johnson et al. (1993, p. 328-335). For instance the following distributions
are mixed Poisson: the negative binomial distribution (see also Section 4), the
Delaporte distribution in actuarial sciences, the truncated-gamma mixture
of Poisson distributions in the context of limited collective risk theory, the
Neyman Type A distribution in biology and ecology, the Poisson-Pascal and
Pélya-Aeppli distributions in biology, the Poisson-Lindley distribution with
applications to errors and accidents.

Mixed Poisson distributions can be very involved. This is the case when
the distribution of the mixing random variable has a complicated structure.

For example, the convolution of mixed Poisson distributions is again mixed
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Poisson with mixing random variable X = Y ; X;, where we suppose that
the X1, ..., X,, are independent mixing random variables of the corresponding
components (see Feller (1943) or Johnson et al. (1993, p. 327)). Hence, it is
often necessary to use an approximation of mixed Poisson distributions. If the
mixing random variable is almost constant, it is reasonable to apply a simple
Poisson distribution.

In the present paper, we consider the approximation of mixed Poisson dis-
tributions by Poisson distributions and also by related finite signed measures
of higher order. We present upper bounds and asymptotic relations for sev-
eral distances. The main tool is an integral formula for the difference of the
counting densities of a Poisson distribution and a related finite signed mea-
sure. Before we treat the more general case (see Section 3), we shall discuss
our results in the case of Poisson approximation concerning the total variation
distance.

Let G denote a mixed Poisson distribution with the counting density
g(m) = G({m}) = E(xr(m, X)), (meZ;={0,1,2,...}), (1)

where E means expectation, X is the mixing random variable concentrated on
[0,00), and 7(m,t) = e 't™/m!, (m € Z4, t € [0,00)) denotes the counting
density of the Poisson distribution II; with mean ¢. Here and throughout this
paper, we set 0° = 1, such that ITy = ¢y is the Dirac measure at point 0.

In Pfeifer (1987) and Barbour et al. (1992, pp. 12-13 and 68-69), one can
find some results concerning the Poisson approximation of mixed Poisson dis-
tributions (see also Remarks 2(b) and 4 of the present paper). In particular,
there are some error bounds for the total variation distance dry (for a defini-
tion see Subsection 2.3). The most remarkable inequalities came from Barbour
et al. (1992, Theorem 1.C, Remark 1.1.2), who used the Stein—-Chen method
to prove that, letting 02 = Var(X),

§ 1
dTV(Ga HM) < (1 - e—ll) % < 02 min{;a 1}7 lfﬂ =EX € (07 00)7 (2)

E|X — s min{\/g, 1}, if s € (0,00). (3)

In the majority of cases, a Poisson distribution with mean p will be used as

drv (G, IIy)

IA

an approximation, so that, for applications, (2) is more important than (3).
According to (2), Poisson approximation is good, if the variance o2 or the
quotient o2/ is small. Since in the Poisson approximation of the Poisson bi-
nomial distribution the Stein—Chen method led to upper bounds of the correct
order with sharp constants (see Barbour et al. (1992, Corollary 3.D.1)), one
may ask, whether the estimates in (2) and (3) are best possible. The results
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of this paper imply that the answer is no. In particular, we have proved the

following theorem.

Theorem 1 (a) The following estimates are valid:

dryv(G, ) < miﬂ{%E(Xln%),JQ}, if 1€ (0,00), (4)

2
drv(G,TI,) < min{\/;Eh/)_(— V3|, BIX — 3|}, if s €[0,00). (5)
(b) The constant 3/(2¢) in (4) cannot be reduced.

Here and throughout this paper, we set 0ln0 = 0. Part (a) of the theorem is a
direct consequence of Theorem 2 below. For a proof, see Section 5. Further, we
show part (b) of the theorem by considering a suitable example (see Section 4).
For the comparison of (2) and (3) with the bounds in Theorem 1, we use the

following elementary lemma, the proof of which is located in Section 5 as well.

Lemma 1 Let p, = E(X") forr € [0,00). If p = p1 € (0,00) and € € (0,00),
then

X [ Hi+te 1 1+4€
E(Xhl;>§zlnu1+€ﬁe—ue(lll+e—ﬂ ) (6)
Ife€[0,1/2] and s € (0,00), then
E|X — s|l/2Fe
BIVX - Vi < 20 )

From (6), we obtain in the case ¢ = 1 that E(X In(X/u)) < pln(ua/p?) <
0?/u, if X has finite variance 2. Further, letting e = 1/2 in (7), we see
that, for s € (0,00), E[VX — v/s| < E|X — s|/+/s. Therefore (4) and (5)
are substantially better than the second inequality in (2) and (3) obtained by
Barbour et al. (1992). It is noteworthy that, in comparison with (2) and (3),
our bounds hold under weaker moment conditions. For example, in the case
of infinite variance o2 and finite moment y;,, the bounds in (2) are infinite,
whereas our bound (4) remains finite. A similar example is possible for the
comparison of (3) with (5). Note that, by (5), we obtain an upper bound for
the total variation distance between two Poisson distributions with different

means:

dry (I, II,) < min{\/gh/i — Vs, |t — s|}, (s,t €[0,00)).

Parts of this bound are due to Freedman (1974, (8)) and Daley and Vere-Jones
(1988, p. 300). For a cruder bound, see Yannaros (1991, Theorem 2.1).

The paper is structured as follows. In the next section, we collect neces-
sary notation about moments, finite signed measures, and probability metrics.

Section 3 is devoted to the main results. Here we present upper bounds and



Poisson approximation of mixed Poisson distributions 4

asymptotic relations. In Section 4, we discuss the negative binomial distri-
bution as an example of a mixed Poisson distribution and give a proof of

Theorem 1(b). In Section 5, we present the remaining proofs.

2 Further notation

2.1 Moments

As above, let p, = E(X"), (r € [0,00)) be the r-th moment of X. We set
u = p1 and always assume that g > 0. Further, the j-th moment (resp. the
r-th absolute moment) of X about s € [0,00), if it exists, is given by v} ; =

E(X — s)? (resp. v s = E[X — s|"), where j € Z and 7 € [0,00). Therefore,

if it exists, 0> = 14 , = vy, is the variance of X.

2.2 Finite signed measures

As candidates for an approximation, we choose a Poisson distribution IT; with
mean s € [0,00) and the related finite signed measures Gy, (K € Z, s €
[0,00)) with the counting density

LIV
Gks(m) = Grs({m}) = f Al(m,s), (meZy). (8)
=0 I*

Here AJ = Ao...0A, (j € N ={1,2,3,...}) is the j-th iterated composition of
the difference operator A from R%+ = {f|f: Z, — R} onto itself, defined
by Af(m) = f(m—1) — f(m) for f € R%+ and m € Z,, with the convention
that f(m) = 0 for all m < 0. Further A is the identity of R%+ onto itself. In
(8) and henceforth, we use the notation An(m,s) = (An(-,s))(m). For the
inverse operator A1 : R%Z+ — RZ+ wehave A1 f(m) = — 37, f(k), (f €
RZ+, m € Z,). Similar to above, let A~/ be the j-th iterated composition of
AL

Remark 1 (a) If we use Gy ; with £ € N for an approximation of G, we must
assume that pr < oco.

(b) Let us collect some facts about the Gy ,: First note that, for each
s € [0,00), we have Gy = II,. Further, the counting density of Gy, for
k € N and s € [0,00) can be evaluated by the help of the following well-

known formula (see, for example, Roos (1999, formula (6))):

Akr(m, s) = (m, s) Cr(m,s), (s € (0,00),k,m € Z), (9)

— T
sk

where

k
Ci(z,s) = Z <k> <m> G (—s)*, (s, €R, ke€Zy)
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denotes the Charlier polynomial of degree k. We obtain, for s € (0,00) and
m € Z_|_,

(1= 9)lm =)
boslm=s) |

gis(m) = w(m,s)(1+

m

da(m) = m,s)(1+ (m? — (25 + Dm + 7))

The case s = 0 can be treated by letting s | 0 in the formulas above. It should
be mentioned that, if u < oo, we have G, = II,,.

2.3 Probability metrics

The accuracy of approximation will be measured by the distances
dy) (Hy, Hy) = [|A (b1 — ha)l,, (10)

where H; and Hp are two finite signed measures concentrated on Z, with
counting densities hi,hy € RZ+. Here, we set ||f]1 = 300, |f(m)| and
[ flloc = SUPpez, |f(m)| for f € RZ+. Further, we assume that p € {1,000}
and ¢ € Z. If G is approximated by Gy s, (k € Z, s € [0,00)), we additionally
assume in Theorem 2 below that £ + ¢+ 1 > 0. In this case, we have to take
hi = g and hy = gy s (see (1) and (8)). The definition (10) leads to several well-
known probability metrics, if we consider probability distributions H1 and Ho:

We obtain the total variation distance dry = dgo) /2, the Kolmogorov metric

d&g 1), the Fortet—Mourier metric dgfl), the point metric dgg), and the stop-loss

(=2)

distances dg ' and dg_2). For the general theory of probability metrics, we
refer the reader to Rachev (1991).

3 Main results

3.1 Upper bounds

The following theorem forms the main result of this paper. Here and through-
out the paper, let |z] € Z be the largest integer < z € R. Set, as usual,
1/00 = 0.

Theorem 2 Letp € {1,00}, s € [0,00), k € Zy, andi € Z with k+i+1 > 0.
Then

(i) 2k+i+1
d1 (Ga Gk,s) < myk+1,sa (11)
; k+i+1 Vk+1,s
d(G, Gi,) < , 2
oo ( k’)_<L(k+z+1)/2J>(k+1)!
Further kit 1)
; Up XX —ylfdy
(4) et S
dy (G, Gs) < Kl E /5 gk it2)/2-1/(2p) | (12)
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where the constants UIS"), (p € {1,00}, n € Z,) are defined in Lemma 4 below

and satisfy

vl =1, i) = \ﬁ v =2,
) 1 € ¢ 3\ 3/2 (13)
U0 =—, UQ= vQ = (—) :
%2¢ e 2e
and
(n+1)/2
U < Vil U <Y (1rf5)(5) T wen.

Remark 2 (a) In (12) and throughout the paper, we use the equality /[ ,f =
— [, Therefore it can occur that the integral in (12) is negative. Sometimes
the following easy equality is useful: For a, s € [0, 00),
X X — k 1 1— k d

Y Yy) ay
/ %dy‘:p(—svcﬂ/ U-y)dy (15)
sy o (yX +(1-y)s)
(b) The inequalities in (11) are generalizations of (2.1) in Pfeifer (1987).

The bounds in Theorem 1 (see Section 1) and in the next corollary are easy
consequences of Theorem 2. Here, we only consider the unbiased case, where

s = is finite. It is easy to derive similar results for the biased case s # p.

Corollary 1 If u € (0,00), the following relations are valid under the as-
sumption that the right-hand sides exist:

2
_ g
dE,m) = (16)
42 (@, 11 in{ 4 32 O
00 ( ) N) S min 3\/2—6(/"3/2_:“ )a? ) (17)
_ (4 /2
A6 ) < win {22 (uye = ), 07, (18)
2
d VG, 1m,) < min{%E(Xln%),UQ}, (19)
3 3/2 1/2
G M) < winfa( o) @ -mp), 0 (@)

Note that, in (16), indeed equality holds. Further, we have no doubt that,
similar to the statement (b) in Theorem 1, the corresponding constants in the

bounds of Corollary 1 are sharp.

3.2 Asymptotic relations

Sharper inequalities than those given in Theorem 2 and asymptotic relations

are possible by means of

. [Vgiq . )
4)(G, Grs) = Gy 1A 9l < 40(G, Grny) - (21)
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(p € {1,00}, s € [0,0), k € Zy, i € Z with k+i+ 1 > 0) and the in-
equalities in Theorem 2, whereby we must know something about the norm
|AF+FLr (. 5)]|,. In Roos (1999, Sections 3 and 4), one can find some prop-
erties of such norm terms. Some special cases were investigated by Deheuvels
and Pfeifer (1986a, b). For sharp upper bounds and asymptotic relations of
the norms, we refer the reader to Lemmas 3-5.

In what follows, we only consider results concerning the total variation
distance in the unbiased case. The other distances and the biased case can be

treated similarly.

Theorem 3 Let us assume that p € (0,00). For t € [0,00) and m € Z,, set
1 1
Lon(t) = (m — £) w(m, 1), ba(t) = {H Syt ZJ'

(a) The relations
2 3 2

o o
drv(G, ) = 3 (Lo () = o) + RO+ (22
hold, where |R| < drv (G, Ga,y),
U(3) |X _ U|3 2
drv (G, G gmin{ L E( ),—1/ } 23
LRI I SR SN AN
drv (G, Gay) < mln{ S 12ME< e ) = 2kl + 1/4,u)}.
(24)
In (22), equalities hold, if u = 1.
(b) An absolute constant c; € (0,00) ezists such that
dry (G, 1) ‘ (1 u )
— B 1| <ea|—+=Sdiv(G, G . 25
o2 u/ame) | =tz vi© G (25)

Remark 3 (a) By Theorem 3, several asymptotic relations for drv(G,11,)
can be proved. In particular, from Theorem 3(b) it follows that dry (G, II,) ~
0?/(pv/2me), whenever p — oo and dry (G, Ga,) pjo? — 0. Here we set
an ~ by, if a, /b, — 1. For an application concerning the negative binomial
distribution, see Section 4. Further, we need Theorem 3 for the proof of
Theorem 1(b).
(b) Suitable upper bounds of the right-hand sides of (23) and (24) can be
derived by means of the easy inequalities
E( | X — 3|3 ) < V2+e,s’ E<(X - 3)4> < V3ie,s (26)
VX +vaR) = s Xt2s ) = o)

for s € (0,00) and e € [0,1]. In practice, (24) has sometimes advantages

over (23), since here we do not have to deal with absolute moments of third
order. An application of (24) is given below (see (37)).
(c) For an upper bound of dry (G, G ), consult (45).
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Remark 4 By using the semigroup method, Pfeifer (1987, (2.20)) proved the
following asymptotic relation: If the distribution of X depends on the mean pu

2

and the variance o“ in such a way that

o2
Vi = O(I>’ [ — 00, (27)

then

o2
dry (G, L) = uvr?5(1+%)< )) (28)
where f1(z) = O(f2(z)) means that |f(z)/f2(x)| is bounded. For a compari-

son with our results, we look at (23) and (25) and see that (28) is valid, if we

suppose the condition

X — ) ( o )
E <7 =0(—5 ). 29
(VX +v/m)? pP? %)
Here we do not need the assumption y — oo. From the Hoélder inequality it
easily follows that condition (29) is weaker than (27). Indeed, if (27) holds,

we obtain
S ) << <o)

Hence, our Theorem 3 is stronger than Pfeifer’s result.

4 An example

4.1 Motivation

As an important example of a mixed Poisson distribution, we discuss in this
section the negative binomial distribution, for which several bounds are al-
ready available in the literature. A comparison with our results document
how good our results are. Finally we are concerned with asymptotic relations,
which lead to a proof of the sharpness result (b) in Theorem 1.

The negative binomial distribution G = NB(g, @) with parameters g €
(0,1) and a € (0,00), is given by

NB(g, 0)({m}) = (O‘ e 1) L-9)%q",  (meZs).

Here, the mixing random variable X has a gamma distribution with Lebesgue—

density
B 1 8
)=+ —1 e t
1) = f e (e 0.0)
where 8 = (1 — q)/q (see Johnson et al. (1993, p. 204)). We have

(
o« 9« , 20 ~ 3afa+2)
O LA TS ey T
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4.2 Upper bounds for the total variation distance

In what follows, we give some upper bounds for
d; := dpy(NB(g, a),II,).

Using (6) with e = 1, we obtain

Hence, by (4),

dTgmin{;%ln@Jré),%}gmin{;’%,%}. (30)

A sharper bound can be derived as follows: Observe that

E<X1n£> = o /Ooo tae_tﬂlnﬂtdtz %(l—l—aq/(a) _Oéln()t)a

(67

p/  T(a)
where
1 d 1 [
v} = —T(2) = *“ e Intdt
(2) T e @ F(z)/o c "

= lnz———2/oo tdt

% 'l @@ 1)
for z € (0,00), is the digamma function. The latter equality can be found in
Whittaker and Watson (1927, p. 251). Hence

(o) <24 aa [T ),

; /000 (t2 + aQt)((i;”t -1) )’ %}

. 3 «a 9 . 3
mln{%, E} =0 mll’l{m, 1}, (31)
which is better than (30).

giving

QL
\1
A\
=,
=
—
|
|
[\
R

4.3 Comparison with results in the literature

Let us have a look at the results given in the literature. For simplicity, we

assume « € N. Then

d, < %, [Vervaat (1969, (1.8))], (32)
d; < #, [Romanowska (1977, p. 129)], (33)
d. < 2 (lﬁz_ q)’ [Gerber (1984, Theorem 2(a))], (34)
dy < % [Pfeifer (1987, (2.1))], (35)
i, < 1 _eﬂ_a/ﬂ < % min{%, 1}, [Barbour (1987, p. 758)]. (36)
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Vervaat (1969) proved his bound by using the Kullback-Leibler distance and
Romanowska’s (1977) note contains a refinement of Vervaat’s method, leading
0 (33). This inequality can also be found in Matsunawa (1982, Corollary 3.2).
Gerber (1984) proved his Theorem 2(a) by using the subadditivity property
of dry. Pfeifer (1987) used a semigroup setting for his results. Barbour
(1987) showed his bound (see (36)) by using the Stein-Chen method. Note
that (36) can also be derived from the inequality due to Barbour et al. (1992)
(see (2)). Observe that our inequalities (30) and (31) are better than (32),
(33), and the second bound in (36). In particular, (30) has a better order,
since aln(l +a!) = 0 as @ — 0. Gerber’s inequality (see (34)) is better
than Pfeifer’s (1987) inequality (see (35)), which is, in turn, also contained
n (31). Note that Lorz and Heinrich (1991, Example 3 and (30)) gave the
bound 27~ 'aB~2 for the Kolmogorov distance between NB(q, o) and II,. In
this context, our Corollary 1 leads to the sharper bound 2 'a3 2.

4.4 Asymptotic relations for d, and proof of Theorem 1(b)

Now we treat asymptotic relations for d;. In view of (24), (25), and (26), we

see that an absolute constant co € (0, 00) exists such that

|ﬂ%dT—1‘ < ( +—(|V§’/’§|+V:’2“)>
= 62(§+\/La_ﬁ+%+a%>' (37)

Since the left-hand side of (37) is bounded by an absolute constant (see (31)),

we obtain

e

where ¢3 € (0,00) is also an absolute constant. Hence d, ~ 1/(8v/2we) as
B — oo and B/a — 0. Pfeifer’s (1987) result (see Remark 4 of the present
paper) implies that

(o)
d (1 + O( 39
! ﬂ 2Te (39)
if )
! !
— = 0(1), = = 00. 40
55 (1) 3 (40)
From (38) we see that (39) is valid in the presence of the more general condition
« «
5= O(1), 5= o(1). (41)

Indeed the implications (40) = (a/f% — 0, /% — 0) = (41) are valid and
an easy example shows that (41) # (40).
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Proof of Theorem 1(b). We now discuss the sharpness of the constant
3/(2e) in (4). From (22) and (24) it follows that, if a = £,

‘%d —1‘ ﬂe(2|1/3“|—|—u4,u) 9ﬂ<7+g)

This yields d, ~ 3/(48¢) as @« = 8 and 8 — oo. Therefore the constant 3/(4e)

in (31) is sharp. Since (31) was derived from (4), the assertion follows. ]

5 Remaining proofs

First we give a proof of the lemma used in the introduction.

Proof of Lemma 1. Using the easy inequality Inz < z — 1, (z € (0,00)), we
obtain, for all ¢, ¢ € (0, 00),

X 1 X)¢
E(Xln—) = —E(Xln (tX) >—ulnt
1% € pe
1 € €
< —E(X(&—l))—ulnt:%—ﬁ—ulnt.
€ u€ € e €

If we consider the right-hand side as a function of ¢, it attains its minimum
at t = (u'+¢/pu11e)V/¢, giving (6). The proof of (7) is clear. ]

For k € Z, and s,t € [0,00), let Hy ; be the finite signed measure with
counting density

k
hk,s,t( ) Hk s,t {m} z m 3) (m € Z+).

Observe that, for all ¢t € [0,00), Hy s = IL, is the Poisson distribution with

mean s € [0,00). Further, we have

gk,s(m) = E(hk,s,X(m))a (k’m €Z,, s€ [O’ OO)) (42)

The proof of Theorem 2 requires some preparations in form of the following
three lemmas. The next lemma forms the main tool in the argument of this
paper. See Pfeifer (1985, Lemma 4.1) for a similar version in the context of
operator semigroups. For the case k = 2, one can also consult Pfeifer (1987,

proof of Theorem 1).

Lemma 2 For k,m € Z,, s,t € [0,00), we have

bt -y)* k+1
w(m,t) — hyse(m) = / o A" (m, y) dy.
s .

In the following two lemmas, we are concerned with sharp norm estimates.
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Lemma 3 Forpe€ {l,00}, n € Z4, and t € [0,00),

1A 7 ()l < [|A™x (-, 0)llp = V3™,
where

(n) _ on n) _
vV =2 v = (Ln/2J) (neZy).

The proof of the preceeding lemma, is easy and therefore omitted. The next

(n)

lemma introduces the constants Up

Lemma 4 Let

U™ = sup ((FVETVED A 1)]],),  (n € Zy, p € {1,00}).
te(0,00)

Then the constants U,Sn) satisfy (13) and (14). Moreover, for

(p,n) € {(1,0), (1,1), (1,2), (00,0), (o0,1), (o0,2)},

we have )
Un
A’n . A(”) = P 43
I|A™ (-, D My (AI()n))(n+1)/2—1/(2p)’ “3)
where
A0, Al =g AP =1 AQ=g AQ=1 AR =T

Proof. Let us first mention that the finiteness of the U,S") is already known.
Indeed, in the case p = 1 and n € N, Deheuvels and Pfeifer (1988) showed
that Ul(") < (2n/e)™?, which is weaker than the first inequality in (14) for
n > 2. The second inequality in (14), which corresponds to the case p = oo,
was proved by Shorgin (1977, proof of his Lemma 6). We now show the first
inequality in (14). For this, we use (9), Cauchy’s inequality, and the well-
known fact that the Charlier polynomials are orthogonal with respect to the
Poisson distribution (see, for example, Chihara (1978, (1.14), p. 4)):

[A (- D)]la

100
t—nZﬂ'mﬂC (m, t)]

m=

0 1/2 1
< %(Zwmt mt))) :%a
m=0

for n € N and ¢t € (0,00). For (13) and (43), see Lemma 3 in Roos (2001)

and observe that 2 ||7(,t)||c = ||A7(-,%)||1 for ¢ € (0,00), (see Deheuvels and
Pfeifer (1986b) or Roos (1999, (23) with k£ = 1)). ]

Proof of Theorem 2. Let p € {1,0}, s € [0,00), k € Z, and 7 € Z with
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k+1i+1 > 0. Using (10), (1), (42), the Lemmas 2—4, and Fubini’s theorem in

the case p = 1, we obtain

d;g)i)(Ga Gk,s) = Ai(g - gk,s)

p

= s ((stetm. 0 —hk,s,x(m)]>mez+> )

- |l EE e o) )

T )

p

meZy llp

X |X — k .
< 5 [ B areag ), af
S

k!

X |X - y|k . (k+i+1) Uigk+i+1)
/s ! mm{vp » FFi2)/2-17Cp) } dy"

This shows the validity of (12). Further, we see that (11) holds:

< E

) ‘/-;k—kl—kl) b'e
dN(G, Gre) < P E((1<s,oo> (X) = 10,6/(X)) / X —y/f dy)
= P Bt 0T 1007 )
Vp(/c+z'+1)
= m Vi+1,s,
where, for a set B, 15(t) = 1 if t € B and 1p(t) = 0 otherwise. ]

Proof of Corollary 1 and Theorem 1(a). First of all, we show (16)
directly: We have II, = G, and therefore, as in the proof of Theorem 2,

a2 ) = 472G, G
= [ [ & -smtmiral)

Since [; (X — y)m(m,y)dy > 0 for all m € Z, we obtain

1

2@ = ([ & -yrim )

m=0 M

_ E(/MX(X—y)dy> :";.

In what follows, we only prove (4). The other inequalities are shown in the

same way. We use Theorem 2 with £ = 1 and derive:

drv(G,11,) = dry(G, Gi,)

(2) X x _
< £E</ X ydy>:EE<X1n£)_
2 u ] 2e 7
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Together with the first inequality in (11), this leads to (4). ]

For the proof of Theorem 3, we need the following lemma.

Lemma 5 An absolute constant ¢4 € (0,00) exists such that, for all t €

(0, 00),
4 c4
- < = 44
I tV2me| — t? (44)

Proof. In Roos (2000, (44)) it was proved that an absolute constant c¢; €
(0,00) exists such that, for all ¢ € (0,1) and n € {2,3,4,...},
4 C4

gl — g)v2re| = (ngl — )’

where b(-,n — 2,q) € RZ+ with b(m,n — 2,q) = ("_2) q™(1 — q)"~2~™ for

m

[

\||A2b<-,n—2,q)||1 -

m € Zy. By the triangle inequality, we obtain, for ¢ € (0,00) and all n €
{3,4,5,...}, ¢ € (0,1) with (n —2)g =t,

1%l = s < A% (,1) = bm = 2,0) s

4 4 1 1
167 2.0 . ¥
‘H ( Dl ng(l — q)v/2we Vomelng(l—gq) t

Since the first and the third term on the right-hand side tend to zero as n — oo
and g — 0, the assertion follows. [ |

Note that Proposition 4 in Roos (1999) leads to an asymptotic relation, which
is weaker than (44).

Proof of Theorem 3. To prove (a), we use (21) withp =1, s = pu, k = 1,
and ¢ = 0, Theorem 2, Lemma 4, and the equality

1A% (- 1)l = % (Lo ® — Li_y(®), (€ (0,00))

(see Deheuvels and Pfeifer (1986a)). In particular, using (12), we obtain one
part of (23):
v

dTV(Ga G2,u) < TE

X (X —y)?
/u y3/? dy‘

vy 3

- mE(w_{—m (VX + Vi)
U g X —uP

S v (s syt

The other part of (23) follows from (11). Now we prove (24). Some prepara-

tions are needed. By (12) and (15), we have

(4)

U 1 (1— y)3 dy
dry (G, Gs,) < o E((X - “)4/0 (yX + (1 - y)u)Q)’
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where

L (1-y)Pdy Ll-y)dy 1 1 p 1
/o (X + (1 —y)u)? S/o =

_ 1 .
WX +p)? X X2 "X+ X + 20

For the latter estimate, we used the inequality Inz < 2(x — 1)/(z + 1), (z €
(0,1]), see Mitrinovié (1970, 3.6.18). Together with (11), we now obtain

(4) 4
. (U (X — ) ) 1 }
< L - )
drv (G, G3p) < mln{ 7 E( X+2: )3 Vi (45)

Using (21) withp =1, s = pu, k = 2, and ¢ = 0, (45), Lemmas 3 and 4, we are
led to (24):

drv (G, Ga,u)

IN

N
5 1A% ()l + drv (G, G

(U (U (X =t 1
12 {u3/2’8}+mm{12uE<X+2u )’5"4’“}
: U1(3) |VLI’: /Jl U1(4) (X — lj,)4 1 ,
mm{ 12 p3/2 12ME( X +2u )’ 3 (2|V3,u| +V4,u)}-

IA
£

=

=

Assertion (b) follows from (21) and (44):

2

2
o o
drv (G, II,,) — < ldrv(G, II,) — — || A%x(-,
v (G, 11,) e S v (G, M) = - 1A C p)lh
o? 4
+ — ||| A% (-, -
2
cio
< dTv(G, Ggu)‘F 4H2
The theorem is proved. [ |
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