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1 Introduction and main results

1.1 Motivation. This paper is devoted to the Poisson approximation of the Poisson bino-
mial distribution with respect to several probability metrics, for which we give new sharp
bounds. It will be shown that the constants involved cannot be reduced. Other publica-
tions concerning inequalities with small constants came, for example, from Le Cam (1960),
Shorgin (1977), Serfling (1978), Barbour and Hall (1984), Gerber (1984), Deheuvels and
Pfeifer (1986a, b, 1988), Deheuvels et al. (1988), Daley and Vere-Jones (1988, pp. 297-299),
Rachev and Riischendorf (1990), Witte (1990), Weba (1994), Xia (1997), and Roos (1995,
1999a, b). To some extent, the method of the present paper is a continuation of argu-
ments in Roos (1999b), where we used Charlier’s (1905) expansion [see also Schmidt (1933),
Shorgin (1977), Deheuvels and Pfeifer (1988)].

1.2 Probability metrics. We proceed with the definition of the probability metrics, which
are considered in this paper. The following notation is needed. Let I be the set of all Poisson
binomial distributions @@ with mean A(Q) > 0. Hence @ € IT means that n € N = {1,2,...}
and p1,...,p, € [0, 1] exist such that A(Q) = 3°7_1 p; > 0 and Q = *]_; B(1,p;) is the convo-
lution of the Bernoulli distributions B(1, p1), ..., B(1, p,) with success probabilities p1, ..., pp;
note that, letting A\2(Q) = 3274 p?, the variance of @ is given by 02(Q) = A(Q) — \2(Q).
Since 02(Q) is a function of @, this also applies to A\2(Q). Another reason for this is the
easy observation that every () € II determines uniquely n € Nand 0 <p; < ... <p, <1
such that Q@ = *7_; B(1,p;). Let Z, = {0,1,2,...} and R?*+ = {f|f : Z; — R}. For
all f € RZ+ set f(m) = 0 if m < 0 and let ||f|l;, (¢ € {1, oo}) be the g-norm of f,
Le. |[fllh = X=o [f(m)| and [|fllc = supy,ez, [f(m)]. We define the difference operator
A: RZ+ — RZ+ by (Af)(m) = f(m—1)— f(m) for f € RZ+ and m € Z,. For the inverse
A7l R%+ — R%+, we have (A71f)(m) = =1 f(k). For k € N, let A*¥ = Ao...0A
(resp. A" = (A1) o... 0 (A71)) be the k-th iterated composition of A (resp. A~1) and
denote by A° the identity mapping of R%+ onto itself. In this paper, we consider the distance

d9(Q) = HAi(fQ — (-, MQ))|l . (g €{l,00}, 1 € {-2,-1,0})

q

between Q € II and the Poisson law P(A(Q)) with mean A\(Q), where fo € RZ+ and
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(-, A(Q)) € RZ+ denote the counting densities of Q@ and P(A\(Q)), ie. fo(m) = Q({m})
and 7(m, \(Q)) = e M (X(Q))™/m! for m € Z,. In the case that no confusion occurs,
we suppress the indicated argument @, that is, we write A for A\(Q), A2 for \2(Q), dg,i) for
d((]i)(Q), and so on. Now we are led to the total variation distance dgo)/ 2, the Kolmogorov

) (-1) (0)

metric dég ! , the Fortet-Mourier metric d; ", the point metric dog , and the stop—loss metrics
dss? and dg—z)‘ Several bounds for dEf) can be found in the publications cited above. For a
treatment of the general theory of probability metrics, see, for example, Rachev (1991). In

(1)

the following proposition, we present some basic relations for the distances dg’.

Proposition 1 For each Q € II, we have
1 _ _
max{d?), d-V} < §d§°) <24V <dl ™ =242 <2d{? = ). (1)

Note that the inequality max{dgg), dég 1)} < dgo) /2 is well-known and easy to prove. Further,
2d<(>g 2) < 2d§72) is clear. In Section 2, one can find the proofs of the remaining equalities
and inequalities. Observe that the non-trivial inequality dgo) /2 < 2d((>§ U was shown in Daley
and Vere—Jones (1988, p. 298) by the help of Newton’s inequality (see Hardy, Littlewood,
and Pélya (1952, pp. 104-105)). The idea behind the proof of this inequality can be used

to show the surprising and non-trivial equalities dg_l) = 2d%? and 2d5_2) = A2. It should

be mentioned that the proof of Proposition 1 does not use a subadditivity property of dgi)
(see also the remark after Proposition 2). Because of Proposition 1, it suffices to consider the

distances dgi) only for g € {1,00} and i € {—1,0}.

1.3 Further notation and facts. For @ = *7_; B(1,p;) €II, g € {1,00}, and i € {-1,0},

let

n ; 0(Q)
M (Q) = j;lpf, (keN), 0(Q)= Q) Q) = Q)0 /2 1/ (20 (2)

Here and throughout the paper, we let 1/00 = 0. It follows from the above that, if g,
i, and k are fixed, \z(Q), 0(Q), and Qgi)(Q) are functions of ). Note that \y = X\ and
0 <0 =1-02/X<1 Forr € [0,1], let II(r) = {Q € I|A(Q) < r}. Further, for
k€ Zy, set op(z) = (2m)"V2(d* Jdak)e=**/2, (z € R) and let |ox|q be the gnorm of ¢y,
ie. |kl = Jg ler(z)|dz and |@g|loo = sup,er |@k(z)|. From (32) in Roos (1999b), we see
that, for any specified r € (0,1), ¢ € {1,00}, and ¢ € {—1,0}, there exists an absolute
constant C' = C, 4; > 0 such that, for all Q € II(r),

‘£—1‘<Cmin{l L—i—@} where u(i):M (3)
) ¢ 1T 2RSS T2
Moreover, for either ¢ = oo, @ = —1 or ¢ = 1, ¢ = 0, there exists an absolute constant C' > 0

such that (3) holds for all @ € II. One should be aware that (3) holds even if we allow
g €[l,00] and i € {—2,—1,0,...}, whereby we have to extend the definition of dgi), (éi), and
ugi) in an appropriate way. As follows from (3), for each choice of ¢ € {1,00} and i € {—1,0},
we have dgi) ~ ugi) C(gi) as § — 0 and A — oo. Here and elsewhere, we set v, ~ n, when
vn/nn — 1. Note that the latter asymptotic relation was already obtained by Deheuvels and

Pfeifer (1986a, b, 1988) and Roos (1995), but, in these papers, we can only find the following
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calculated values of ugi):

1 1 2 _ 1
0 _ _* - _ = (0) _ e 4
Yo = o o ™ nare VT Vare 1 Nz 4)
1.4 Main results. In view of (3), set, for ¢ € {1,00} and i € {—1,0},
U (r)y = sup dg)(Q) (r € (0,1)) U (0) = lim UD (r).
’ oentr) ¢(Q)’ o ! rlo

Obviously, Uq(i)(r) is finite and nondecreasing as a function of r € (0,00), so that Uéi) (0) is
well-defined. Tt is noteworthy that (3) implies that

. (@) )
D = i ( sup d((;TLQ)> < U(0). (5)
r10,M100 \ ger(r), A(@)>M (§7(Q)

The main purpose of the present paper is to evaluate Uéi)(O). This will be achieved in

Theorem 1 below. Introduce the constants

. 1/ 3\3/? - 1 - 3 ~(— 1
0 — (2 (1) — L 0 _ 2 (=) _ =
00 2<26> ) 00 26’ Ul Ul . (6)

Theorem 1 For each choice ¢ € {1,00} and i € {—1,0}, we have Uéi)(O) = ﬁéi).

A comparison between ﬁq(i) and ugi) (see (4) and (6)) shows that the difference Uéi)(()) - ugi)
is positive and, in general, relatively small. Indeed, we have

0O — 4 = 0.0054..., UCY —ulZY =0.0629. ..,
700 _ W0 — 0.0678...., oY —ul™Y =0.0299.. ..

Theorem 1 can be deduced from the more precise Theorem 2, in which we give an explicit

sharp upper bound for dg,i) containing géi), f, and the constant Uq(i). Let

A =2 AV =1, AP=1, AV =_, (7)

oo

— N W

Recall that 0 is defined in (2). Let, as usual, 1/0 = oc.

Theorem 2 (a) For Q €11,

10 < (ﬁ@+%>%, 0
I (ﬁgo1>+5(16_7\/%> 0 o)
a0 < <~{°)+%>9, (10)
a < <~1(1) %)9\& (11)

(b) The inequality for dgi) given in (a) can be replaced by “~7, if 6 — 0 and X\ — AE,").
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Remarks. (a) In the case # = 1, (8)—(11) reduce to the trivial statement dgi) < oo for
q € {l,00} and i € {—1,0}.

(b) For the better understanding of Theorem 2(b), we consider an example: If ¢ = 1,
i=0,0—0,and A = Agi) = Ago) = 1, we have sharpness of (10), i.e.

0 ~0)  TVH(3—2V0) ~(0 3
d§>~ <U1( )+—2>9~U1( o= 0.
3(1 — V0) 2¢
If we assume that # — 0 and A — oo instead of the conditions above, we obtain from (3) that
dgo) ~ ugo) 0 =260/+/2me < 30/(2¢); in the latter case, we do not have sharpness in (10).

The following corollary is a consequence of the Theorems 1 and 2. Further notation is
needed. For Q = *7_; B(1,p;) € I, set po(Q) = maxigj<n pj- Let TI(r) = {Q € | po(Q) <
r}, (r €0, 1]). Note that 0(Q) < po(Q), giving II(r) C II(r) for all » € [0,1]. For ¢ € {1,000}
and i € {—1,0}, let

(i)
—(i) dy’ (Q) —(i) . ==(i)
U, (r)= sup — , (r € (0,1)), U, (0) =lmU,’ (r).
! Qetitn) ¢ (Q) ! rlo ¢

Corollary 1 For all g € {1,00} and i € {—1,0}, we have U[(]i)(O) = ﬁq(i)-

1.5 A second problem of sharp constants. The problem of sharp constants given above
has an easier counterpart, which we now discuss in greater detail. Let us have a look at
(33) in Roos (1999b). From this, it follows that, for any choice of M > 0, ¢ € {1,000}, and
i € {—1,0}, there exists an absolute constant D = Dy ,; > 0 such that, for all ) € II with
Az =2 (Q) < M,

S 1‘ < D min{l, A}, where wf(IZ) ) [N (12)

and 1 € R%+ is defined by setting 1(0) = 1 and 1(n) = 0 for n € N. Observe that, as (3),
(12) also holds if we permit g € [1,00] and i € {—2,—1,0,...}. Since Ao < A, (12), in turn,
implies that, for ¢ € {1,00} and 7 € {—1,0}, dgi) ~ wéi)/\g as A — 0. Note that, in the case
(q,7) € {(00,—1), (1,0), (1,—1)}, the latter asymptotic relation can be found in Deheuvels
and Pfeifer (1986b). We have

T S S ) (13
In view of (12), we see that
(i) ,
lim < sup dy (Q)> = w(gl). (14)
rlo \ gem, A(Q)<r A2(Q)

Equality (14) can be compared with the equalities given in (5), Theorem 1, and Corollary 1.
The following proposition is an easy consequence of (1), (12), and (13) and gives an explicit

sharp upper bound for dg,i)

containing Ao and the constant w[(f).
Proposition 2 For Q €11, g € {1,00}, and i € {—1,0}, we have
) < wl X (15)

If X = 0, all inequalities in (15) and in (1) can be replaced by “~7.
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q,1) € {(00,—1), (1,0), (1,—1)}, (15) is already known (see Le Cam
(1960) for (¢,i) = (1,0), Serfling (1978) for (q,i) € {(1,0),(c0,—1)} and Deheuvels et
al. (1988) for (q,i) = (1,—1)). It should be mentioned that Serfling (1978, p. 573) pointed
out that (15) with (¢q,7) = (00, —1) is due to D. J. Daley. Note that in Serfling (1978, p. 570),
the basic idea was to use the subadditivity property of dgo) and dég U This method can
be applied to each dg,i). Indeed all dg,i) are subadditive, which can immediately be shown.
Hence it can be used that, for @ = *J_; B(l,p;) € II, ¢ € {1,00}, and i € {-1,0},
dgi)(Q) < Yia dgi)(B(l, p;j)). Now it suffices to show the following elementary relations
(see Serfling (1978, (4.1) and (5.2)) for the first two):

Remark. In the case (¢

—p; - P
d” (B(Lp) =2 (1 —e™) <2p3,  dSV(B(Lpy) = e —14p; <3
dy Y (B(Lpy) =2(e™ — 1+p;) < v}, dQ) (B(1,p))) = pi(1 —e™) < p7.

Observe that, in the present paper, the proof of (1) and hence the proof of (15) does not need

the subadditivity property of the distances dgi).

2 Remaining proofs

Proof of Proposition 1. Let € II. We show that (a) 2d$5Y < dg_l), (b) dgo)/Q < 2d<(>§1),
(c) di™ = 24?, and (d) 241 = Xy. Let v = [fo — 7(-,A)] € R%+. Since the mean
of @ and P(\) coincide, we have 322, A~lv(k) = 0, and therefore, letting K, = {k €
Z,|A7'w(k) >0} and K = Z, \ K., we obtain > okek, A7w(k) = = e A7 (k).
Now we can show (a):

20V = 2sup A (k) <2 sup | S AW ‘=2ZA1
keZy KCZy ek keKy
= S AwE) - S AT = Y AL (k)| = a7V,
keK keEK_ keZy

For (b)-(d), we proceed with an argument of Daley and Vere-Jones (1988, p. 298), who
proved (b): There exist kg = ko(Q) and k1 = k1(Q) in Z, with ky < ky such that

(k€ Zy|vk) >0} = {ko,... k). (16)

Indeed, this can be shown by means of Newton’s inequality (see Hardy, Littlewood, and
Pélya (1952, pp. 104-105). From X\ > 0 it easily follows that ©(0) < 0 and hence ky > 1. We
obtain the known result (b):
1d(0) _ L _ A1 -1 -1 _ oq(=1)
g = Z v(k)=A (ko —1) — A v(k) <2)A Voo = 2d. .
k=ko
Further, in view of (16), we see that
(i) A~ty(k) >0 for all k € {0,..., ko — 1},
(i) A~k +1) <A (k) © kg—1<k<k —1,and
(iii) A=tw(k) <0 for all k € {ky, by +1,...}.
Therefore ks = ka(Q) € {ko — 1,...,k1 — 1} exists such that

K, ={kecZ,|Aw(k)>0}={0,... k). (17)
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Since 3252, A~ lw(k) = 0, we have —A~2u(k) = ZJ 0o A7lw(j) > 0 for all k € Z,. Hence,
(17) leads to (c):

00 k2 00 ko
a7 = Y AT =3 AT - 3 ATk =23 a7
— = k=ko+1 k=0

= 2 sup
JEZy

ZA ‘—2||A 2U|00 = 2452,
k=0

Further, it is now an easy task to verify that (d) holds:

o0 o k 00
_ 1. 1 A
= 1A = 30 3 AT () = =5 32 mlm = Dr(m) = .
k=0 k=05=0 m=0
The proposition is proved. [ |

The proofs of Theorems 1 and 2 require sharp estimates of the norms ||A%*ix(-,¢)||, for
q € {1,00}, i € {—1,0}, and ¢t € (0,00). The following three lemmas are necessary. Let us
write AFm(m,t) = (AFx(-,t))(m) for k,m € Z, and t € (0, 00).

Lemma 1 Lett € (0,00) and k,m € Z. If k+m > 1, then

k+2m>(k’+2m+1)/2 ok i”: T((k+2j—1)/2) (18)

R — + J— - R
4te ot (2t)(k+2j-1)/2

AR (-, 1)]los < 2841 ak+2m(

where aj = 271\/e(1 + /7/(27)), (j € N).

Proof. For ¢t € (0,00) and k € Z, let y;(t) = foﬂ/z exp(—2tsin® z) sin® 2 dz. First we will
show that, for ¢t € (0,00) and k,m € Z,,

1 & k:+2]—1 2
V() < Yerom(t 52_: IGEE 1% ). (19)

For m = 0, (19) is clear. Let us now consider the case m = 1. Using the equality sin®z +
cos?x =1, (x € R), we obtain, for ¢t € (0,00) and k € Z,

k

™
Vi (t) = Yera(t) +/ exp(—2tsin® z) sin® z cos® z du.
0

Substituting y = 2¢sin? z, the latter integral is equal to

I D((k+1)/2)
y k-1/2 1 _ Y

completing the proof of (19) for m = 1. Now it is easy to show (19) by induction over m. To
prove (18), we use (19) and Shorgin’s (1977, proof of Lemma 6) inequalities

2k+1
A (Bl < (), (€ (0u00), k€2, 20
(k+1)/2
e (t)<ak7r<4]:> . (te(0,00), k€ N). (21)
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Note that (20) can be verified with complex analysis. Indeed, it is easy to see that
o0
ZAkw(l,t) 2h = exp(t(z —1))(z — 1)F, (z€C, te(0,0), k€ Zy)
=0

and, by Cauchy’s theorem, we are led to (20)

e exp(t(e™ — 1)) (e — 1)F da:

—T

A (-, )[loo = sup |AFx(l,1)] =
leZ leZy

o [ Jexplete — 1)

ir k 2k+1
e —1‘ da::T'yk(t).

Here, i denotes the imaginary unit in C. Now we obtain, for ¢ € (0,00), k,m € Z with
k 4+ m > 1, the following inequalities

2k+1 2k+1 k +925 — 1)/2)
k J
I8kl <€ T 0) < T (o (8) + 5 Z )
2k+1 kE+2m (k+2m+1)/2 1 ((k + 2] o 1)/2)
< (ak+2m 7T< Ate ) 5 Z (214;) (k+25-1)/2 ) )
giving the assertion. [ |

For ¢t € [0,00) and m € Z, let L, (t) = (m —t) m(m,t). Here and throughout the paper,
we let 0° = 1, leading to L, (0) = m(0™/m!)e=® =0 for all m € Z.

Lemma 2 Fort € [0,00) and m € N,

—— < Lp(t) <0,  —031<Ly(t) <017,  —0.3 < Ly(t) <0.19, (22)

e

—exp (ﬁ) < V2me Ly (t) exp (ﬁ) < exp < - m> (23)

In particular, for all t € [0,00) and m € Z, we have |Ly,(t)] < 1/e.

Proof. By easy calculus, we get, for m € Z,,

sup Ly, (t) = Liy(r;,) >0, inf L, (t) = Lm(r;z) <0,
tG[0,00) t€[0700)
1 2 1 1
+
= 4+ ) = i -
Tm < mty 2> tyEymt g
leading to
Lin(ry,) < Lin(t) < Lin(ry,), (t €10,00), m € Zy). (24)

Considering m € {0,1,2}, we obtain (22). For the proof of (23), let m € N and s} =
T(m —rE) = V/rm. Then s, € (0, y/m), s} € (y/m, o), m = st(st T 1) and, using
Stirling’s formula [see Feller (1968, page 54)]

m! = V2 m™ /2 dm—m _ 1 <J(m) < 1 (25)
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we get
+y _ oy ()™ G
Lm(rm) - (m T‘m) € m! FSm € /o1 mm+1/2 gd(m)—m
+3\2\ m+1/2
= :F% <(S;’;) > exp(Fst — 9(m)). (26)

Using the inequality [see Mitrinovié¢ (1970, 3.6.18)]

log(v) < max{2(:;11), V\/_Dl }, (v € (0,)),

it is easy to show that

(1) tog (U2 < (4 4 1) 2l =) _ 4 Dl1j2 = /T T
2 m -

2) (sm)2+m 2m+1/2 —/m+1/4
2m +1 +1 1 1 1
— - = — m _— — —3g JE
2y/m+1/4 4 4ym+1/4 "2 4ym+1/4
and
1 (5;+)2 1\ (sH)2 —m 1\ s}
() < (Y
( 2) 8 ) = 2) shym 2) shym
1 1 1 1
= <st— -4 ——.
Vm+ —— \/_ m+ = +2\/ﬁ_sm 2+2\/m

If we combine these inequalities with (24), (25), and (26), we obtain, for ¢ € [0,00) and
m € N,

5= m+1/2
In(®) < Enlr) = —=(220)" e, - 00m)

Vo \ m
< = (- =7 ")
= Vome P 4y/m+1/4 12m+1)’
1 (8-1—) m+1/2
La(®) > L) = = (P20 )7 exp(osi = om)

1 1 1
> - .
= " Vame P <2\/m 12m + 1)

Therefore (23) is valid. Now, we prove the rest of the assertion. From (22) and (23) we easily
obtain, for all t € [0,00) and m € Z, Ly, (t) <1/v2me < 1/e =0.3678....1If t € [0,00) and
m € {0,1}, (22) yields —L,,(t) < 1/e and, in the case m € {2,3,...}, (23) leads to

<

10 on () < o (25

The lemma is proved. [ |

0.35 <

1
e

For z € R, let |z|,[z] € Z be defined by 2 — 1 < |z| <z < [z] <x+1.

[An(, )1 < \/g (27)

Lemma 3 Fort € (0,00),
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Ian( Dl < o (28)

a0k < =, (29)
3/2

a0l < (5) (30)

n (27), (28), (29), (30) equality holds, respectively, fort =1/2,t=1,t=1,t=3/2.

Proof. Ad (27): This was shown by Deheuvels and Pfeifer (1988) [see also Deheuvels and
Pfeifer (1986a, b)]. They also proved the identity

[t]V
Ad (28): Deheuvels and Pfeifer (1986b) proved that

[A7 (- )[ly = 2e” (t € (0,00)). (31)

AR )l = %max{Lw (0, ~Ln (0}, (1€ (0,%0)), (32

where by (t) = [t +1/2 £/t +1/4]. Now, (28) follows from Lemma 2.
Ad (29): Deheuvels and Pfelfer (1986a) proved that

1A% (-, )]l = % (Lo 9y (8) = Lo_ 1) (1)), (t € (0,0)), (33)

where by (t) is defined as in the proof of (28). If b_(t) > 5, then by (¢) > 5 and (29)
immediately follows from Lemma 2:

1.09 3 1.10...

< =
t ~ te t

IA%7 (-, 1)l <

IN

t\/zﬁ [1 oxp (iﬁ)

It remains to prove (29) in the case 0 < b_(t) < 4. Easy calculations show that, for ¢ € (0, c0)
andm € Z,, by (t) = mifand only if t € [mF\/m, m+1F+/m + 1). Therefore, 0 < b_(t) < 4
if and only if (b_(t),b4(t)) € I, where

I=4{(0,1), (0,2), (0,3), (1,4), (1,5), (2,5), (2,6), (2,7), (3,7), (3,8), (4,9), (4,10) }.

Indeed, this follows from

b_(t)=0 & te€]0,2—V2)U[2—V2,3—V3)U[3—3,4—V4)
& b_(t)=0and by(t) € {1,2,3},
b(t)=1 & ted—Va5-V5)U[B-V52+V?2)
& b_(t) =1 and by(t) € {4,5},
bo()=2 & te2+V2,6—V6)U6—v6,7—V7)U[T—VT7,3+V3)
& b_(t) =2 and by (t) € {5,6,7},
b (H)=3 & t€[3+V3,8—-V8)U[8—V89—V9)
& b_(t) =3 and by(t) € {7,8},
b_(t) =4 & te]9—9,10 —10) U[10 — V10,5 + V/5)
& b_(t) =4 and by (t) € {9,10}.
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If (b_(t),by (t)) = (0,3), then ¢ € [3 — /3, 2) and

2 2 e 3 2 3

1827, 0l = 2 [Lslt) — Lo(0)] = S (- 432 16) < 2

which can directly be shown. The remaining 11 cases for (b_(t), by (t)) can be treated using
(24):

2 2 _ 3
|A%7(-, 8]l = 7 Loy (®) = Lo_y (] < 5 [Loy 1) (1, 1) = Lo_o) (ry_ )] < o
where 7k, (m € Z,) is defined as in the proof of Lemma 2. The latter inequality can

immediately be verified by inserting the values of (b_(t),b4(¢)) € I'\{(0,3)}. Inequality (29)
is proved.
Ad (30): If ¢ > 29, then (30) follows from (18) with m =3 and k = 2:

1 ™\ (2\Y21 4 3 T(j+1/2)] _ 0.40981 3\%/?
2 . —_— —_— — JE— Ju— [
8% Dl < s [ave(142) (3) 5+ 2 A < BB < ()

=1

It remains to show (30) in the case ¢t € (0, 29). As proved in Roos (1995, Lemma 2.3),

1A% 1) oo = mmax, [A%m(Lay (D)0 (£ € (0,50)), (34)

where 0 < z1(t) < z2(t) < z3(t) are the real zeros of the 3rd Charlier polynomial c3(z,t) =
2% —3(t + 1)2% + (3t> + 3t + 2)x — 3. For t € (0,00), let

7 / 11 2
yi(t) =t+1—v3t+1, yz(t):t—i-g— 3t+ﬁ’ yg(t):t-l-g,

7 / 11
ya(t) =t + 1, ys(t) =t+ 1+ V3t +1, yﬁ(t):t-l-g—F 3t+ﬁ'

Then it is easy to show that y;(t) < y;41(t) for all 1 <j <5 and
zj(t) € (y2j—1(t), y25(8)),  w2i(t) —wo—1(f) <1/3, (L <j<3). (35)

Indeed the first relation in (35) follows from the observation that

03(yj(t)7t) =-t <0, (.7 € {1747 5}) and 03(yj(t)7t) = % >0, (] € {27376})'

This yields |A27(-,t) |00 = maxi<j<s |A%7(ly;(t)],1)], (t € (0, 00)). For t € (0, 29), we have
yj(t) <39.6 for all 1 < j <6 and therefore, by using some calculus,

3 3/2
BRIAZ( )| = max 32A2(m,t)| < max  max s¥2|A%x(m, )| < (—) ,
0<m<39 0<m<39 se(0,00) 2e
completing the proof of (30).
The indicated sharpness of the inequalities (27)-(30) is easily verified by using (31)-(34). =

Remark. The formulas (31)—(34) for the norms [|A*7(-,t)||,, (¢ € {1,00}, k € {1,2}) given
in the proof of Lemma 3 can also be obtained from a more general result (see Roos (1999b,

Corollaries 1, 2)). For a precise statement, we need some preparations. Let

k
o) = 3 ("“) (?)ﬂ (08, (hoeR, heZy)
= \i)\J
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denote the Charlier polynomial of degree k. Observe that
1
Akﬂ'(ma t) = t_k ﬂ'(ma t) Ck; (ma t)a (t € (07 OO), ka m e Z+)7 (36)
(see, for example, Roos (1999b, formula (6))). From the theory of orthogonal polynomials it
is known that the zeros of the Charlier polynomials ¢y (x,t), (kK € N, t € (0,00)), are real,

simple, and located in the interval (0,00). The result is now as follows: If k € Z, t € (0,00),
and 0 < z1(t) < ... < zpy1(t) denote the zeros of ¢xy1(x,t), then

I8kl = ma Ak (L (9], ) 1)
k+1 ) k+1

1A ()l =2 D (=1 AF ([ ()], 1) =2 ) |A (| (1) ], 1)]- (38)
j=1 j=1

Note that the identities (37) and (38) explain the connection between the formulas for
|A7(-,t)|loo and ||A%7(-,¢)||1 given in the proof of Lemma 3 (see (32) and (33)).

Proof of Theorem 2. Let ¢ € {1,00} and i € {—1,0}. We may assume that Q € II(1).
Using Theorem 2 in Roos (1999b) with the parameters t = A\, k =0, s =2, and j = 1, we
obtain d[(;) = H + R, where

A2 i 1+ /7/2 o 09T ey
H = ? HA 71-('7 )‘)“q’ |R| < 21-1/q (Z _’_3)[a+1/q]fa71/q Z \a@ J )

Jj=i+3

and a = a(gi) =(i+1)/2—1/(2q). Applying Lemma 3, we are led to (8)—(11). Now we prove
the sharpness of the inequalities. From (33) in Roos (1999b) it follows that, for any choice of
M >0, g€ {l,00}, and i € {—1,0}, there exists an absolute constant B = Bjys4,; > 0 such
that, for all Q € TT with A» = A2(Q) < M,

(i) . |
.dq 0) —1‘§B<ﬁ+)\z+|>\—AgZ)|) SB(1+\/M)(\/)\2+|)\_A§]z)|)’
Ao || A2 (- Ag)||,/2 Ao
since Az < /\3/2' Therefore, if A — Ar(zi) and § — 0, we also have Ao — 0, and letting a as
above,
d® /\2||A2+i (- A(i))” I(A(i))a+1||A2+i (- A(i))H 0 £ (0
qu T\ Ag quq W’QQF_QCQ'

For the latter equality, we used (6), (7), and Lemma 3. Hence inequalities (8)—(11) are sharp.
The proof is completed. u

Proof of Theorem 1. We show Uéi)(O) = (?q(i) by proving “<” and “>”" separately. In view
of (8)—(11), define, for r € (0,1),

_ V6= 4y7) Sy OV
0. _ W —2yr) (-1, _ SVTr(2—/r)
= S (NG

Now we obtain, for ¢ € {1,00} and 7 € {—1,0},

(1)
oY T dy’ (Q) - 20) 4 1)
o=t 2, ) <1 (g, [0 10 0@ <
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It remains to show “>". For n € {3,4,...}, ¢ € {l,00}, and i 6 { 1,0}, let Qnqi =
n, A /n) be the binomial dlstrlbutlon w1th parameters n and A /n Here G(Qnyq D) =

/n <3/(2n) < 1/2, ie. Qugi € TI(2457 /n). Now Theorem 2(b) tells us that dy (Qp.4) ~
Cq (Qn% ) as n — oco. Hence

(3) () % .
U( )(0) = lim ( sup d?i)(Q)> = lim < sup d?i)(Q)) > lim ? (@n.q4) Uq(’).
™0\ @en(r) (47 (Q) nfoo Qem(24%) /n) Ca (Q) nfeo Cq (Qng,i)

B(
AW
50
q

(39)
The theorem is proved. [ |

Proof of Corollary 1. As in the proof of Theorem 1, the equality asserted is shown by
proving “<” and “>” separately. Since II(r) C T(r) for all » € [0,1], “<” follows from

Theorem 1:
i 4o 4o _ .
7 (0) = lim( sup ?Z.)(Q)> < lim( sup E’i)(Q)> — U (0) = U710,
"0 N Qetitr) ¢ (@) M0 Neenn) (5 (Q)
The proof of “>” was substantially done in the proof of Theorem 1: In (39) one has to
consider II instead of II. Further, note that po(Qyq.) = A((f)/n. ]

3 Concluding remark

In Roos (1998, Lemma 5, Theorem 2) an inequality

3 ) (h+1)/2

1AR (-, 1) oo < a(—

, (t€(0,00), k €N)
te

was used, where o € (0,00) is an absolute constant independent of k and ¢. From (20)
and (21) it follows, that we can choose a = a1. In Roos (1998), it was also claimed without a
proof that « can be replaced with ay = 271\/e(1+./7/8). Now this assertion can be checked.
In the case k # 3, we argue with (20), (21), and the inequalities in Lemma 3. In particular,
we use the fact that ay is decreasing in k. Let us now consider the case £ = 3. For ¢ large
enough, we obtain the assertion from Lemma 1 with m = 1: Indeed, for ¢ > 2.009,

A () < 2 125(1 + /7/10)

< Z
oo_7r+ 8eb/2 ¢

3 2
< 1.6329 < ay (—) =1.633....
e

For ¢t € (0,2.009), we must work harder: Using Corollary 1 in Roos (1999b) (see (37) of
the present paper), we have [[A®7(-, )|l = maxi<j<a |[A37(|z;(t)],t)| for t € (0,00), where
0 < z1(t) < ... < z4(t) are the zeros of the 4th Charlier polynomial

ca(m,t) =zt — (4t + 6)x3 + (6t + 12¢ + 11)2? — (42 + 61> + 8t + 6)z + t*.
Now let

alt)=t+1—-\B+Vo)t+1,  z@)=t+2—\/B+V6)t+1,

z;:,(t):t—ir%— (3—\/6)154—%, 24(t):t+;— (3—\/6)154&,
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Z5(t):t+%+\/(3—\/6)t+i, zﬁ(t):t+;+\/(3—\/6)t+i,
1
5 )t—i-Z,

Z7(t):t+§+ (3+\/f_i)t+i, 28(t):t+g+ (3+V6
t)

Zj( = Zj(t) fOI'j € {1,4,5,6,7,8},

Zo(t) = min{2a(t), 23(t)}, Z3(t) = max{za(t), z3(t)}.

Using some straightforward calculus, one can show that Z;(t) < Z;41(t) for all 1 < j <7 and
wj(t) € (Z2j1(t), 225(1),  0<Zgi(t) = Z51(t) <1, (1<j<4). (40)
The first relation in (40) follows from the fact that
ca(zj(t),t) >0, (5 €{1,4,5,8}) and ca(zj(t),t) <0, (5 €{2,3,6,7}).
Hence

3_(. _ 3 _ _ 3_(:
18550 = e [A% (350, )] = _max [A%GOL (t€ (0.00). (4D
By using (36) and (41), it is easy to show that [|A37(-,t)|leo = e *(3 —t) for t € (0,2], from
which the assertion follows for ¢ € (0,2]. The remaining case ¢ € (2,2.009) can be treated by
using (41) directly.
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