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Abstract. The generalized multinomial distribution is approxi-
mated by multinomial distributions and also by finite signed measures
resulting from the corresponding multivariate Krawtchouk expansion.
Bounds for the total variation norm and the ¢,,—norm are presented.
The method used is a multivariate extension of that in Roos [6], al-
though additional complications occur.

1 Introduction

1.1 The problem. Let S, be the sum of independent Bernoulli random
vectors X1, ..., X, in RF with probabilities

k
P(Xj = 67-) = DPjr, P(Xj = 0) =1- ij,r = Dj,0,
r=1

for j € {1,...,n} and r € {1,...,k}, where e, € RF is the vector with entry
1 at position r and 0 otherwise.

In this paper, we consider the approximation of the generalized multi-
nomial distribution P%* by multinomial distributions and also by finite
signed measures resulting from the corresponding multivariate Krawtchouk
expansion. Such approximations of PS5 are useful, for example, in case
of X1,..., X, being nearly identically distributed. The main task is to give
some bounds for the approximation errors with respect to the total variation
norm and the £,,—norm.

Using Stein’s method, Loh [5, Theorem 5] has recently provided a some-
what complicated upper bound for the total variation distance between P>~
and a multinomial distribution. In the univariate case k¥ = 1, the problem
reduces to the binomial approximation of the Poisson binomial distribution.
It follows from Ehm'’s [3] results (see (1) below) that, in this case, Loh’s [5,
Corollary 3] bound has not the correct order.

The method of the present paper is a multivariate extension of that in
Roos [6]. Further, some ideas of Shorgin [9] and Roos [7] are used. We have to
deal with the multivariate generalizations of the Krawtchouk polynomials.
A complication is that these are, contrary to the univariate case k = 1,
no longer orthogonal with respect to the multinomial distribution [see (4),
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(5), and the remarks thereafter]. For the binomial approximation in the
univariate case, our upper bound with respect to the total variation norm
has the correct order [see Corollary 1 and formula (1)].

For Poisson approximations of PS5 see, for example, Barbour [1], De-
heuvels and Pfeifer 2], Roos [7, 8], and the references therein.

1.2 Further notations. We always assume that m € Z,, u,4,v,0,w €
Zi, and y,z € C¥. We use the standard multi-index notation: For z =
(#1,--.,25) and u = (uq,...,ug), we set 2% = 2 ... 2% |u| = SF_, u,, and
u! = uy!...u,!. We always let 0° = 1. We write u < v in the case that
ur < v, for all r; if additionally at least one of these inequalities is strict,
we write u < v. Similarly, u Av € Zﬁ_ is the vector with rth component
min{u,, v, }. All of our series and sums are carried out over subsets of Zﬁ,
unless otherwise specified. For example, the sign Z|u|§m means the sum
over all u € ZX with |u| < m.

Let ¢ = (q1,...,qx) € (0,1)% with ¢gg = 1 —>F_, ¢, € (0,1), and, for
re{0,...,k},

_ 1 n _ . _ n

b, = _ij,r €(0,1), p= (D1, Pr)s Z p]r
"= j=1

Note that By = 1 — 2F_, §, and that v (r,p) = 0 for all » € {0,...,k}. The

counting density M (-, m, q) of the multinomial distribution M (m, q) is given

by

MWW@:MW@WMz{FWWW%

if |lw| < m,
otherwise.

In the case k = 1, M(m, q) is a binomial distribution, which is also denoted
by B(m,q). For f : Z¥ — Randr € {1,...,k},let A, f : ZE — R with

_ flw—er) — f(w) if we > 1,
(Arf)(w) - { —f(w) if w, = 0.
Further, let A%f = f and AT'f = AT 1(A,f) for m € N. Clearly,
A A f = AGAf for s € {1,...,k}. Let A¥f = A . AFf. We
set A"M(w,m,q) = (A*M(;,;m,q))(w). Let [|fl1 = Xyezr [f(w)| and
1flleo = SUPyczi |f(w)|. For a finite signed measure () concentrated on
Z* with counting density fo, let [|Q[1 = [ folli and [|Q|loc = || follc- For
wGC let () =ITL1(z =5 +1)/35.
1.3 Some known facts in the univariate case. In this subsection, let

k = 1. Using the Stein—-Chen method, Ehm [3, Theorem 1, Lemma 2] proved
the following estimates:

1,p 1
’72( ,p) I’IllIl{ — 1}
62 nP1Po

IA

1P = B(n, 1) lx

1
< 2ppmin{—— 1) (1
np1Po
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Hence the term on the right-hand side of (1) and ||P°» — B(n,p;)||1 have
the same order; further, this distance is small if and only if y2(1,)(np;P,)
is small (see Ehm [3, Corollary 2]). A generalization of this fact for £ € N
being fixed or bounded is shown in Corollary 2 of the present paper.

For further results on the univariate case, see Roos [6] and the references
therein.

2 Main Results

2.1 The Krawtchouk expansion of P,

Theorem 1 For arbitrary q,

P(Sp=w) = Y aulg) A"M(w,n —|ul,q), (2)

lul<n

where the coefficients ay(q) are defined by the relation

n k
Z ay(q) 2" = H (1 + Z(pj,r —qr) zr)- (3)
j=1 r=1

In this paper, we call the right-hand side of (2) the Krawtchouk ex-
pansion of P°* with parameter ¢; further, we call the coefficients ay(q) the
Krawtchouk coefficients of P°» with parameter ¢. For the approximation of
P3n, we use the finite signed measures M;(n,q), (t € {0,...,n}) concen-
trated on Zﬁ with counting density

Mi(n.q)({w}) = > au(q) A"M(w,n - |u], q).

lu|<t

Remarks. 1. For ¢t > 1, My(n, q) depends not only on n and ¢ but also on
the Djqr-

2. For all ¢, we have M;(n,q)(Z%) = 1 and My(n,q)({w}) = 0 in the
case |w| > n.

The Krawtchouk expansion of P5» and its coefficients are associated with
two sets K, g = {Ku(2,m,q) | |u| < m} and Ky, 4 = {Kyu(2,m,q) | |u] < m}
of multivariate Krawtchouk polynomials with variable z, which are, for |u| <
m, defined by

m—SF_ 2\ Ju— ol (—q)*7 ¢! & 2y
Ku(z,m,q)zz< Sra1 r>| &(_%; a H() @

v<u |u o U‘ r=1 \Ur

and

. (m = ot (="~ () .

Kalermoa) = 2 == fant U (o,

v<u

!
=1
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Remarks. 1. Apparently Griffiths [4] is the first author who treated a multi-
variate generalization of the Krawtchouk polynomials, though he did not give
an explicit formula comparable with (4) or (5). For k = 2, another version
of the Krawtchouk expansion and the two kinds of Krawtchouk polynomials
above can also be found in Takeuchi and Takemura [11, Section 3], who con-
sidered various approximations of the counting density and the distribution
function of the sum of not necessarily independent Bernoulli random vec-
tors. The multivariate Krawtchouk polynomials for arbitrary k were given
by Tratnik [12, formulas (3.3) and (3.4)] by means of the generalized Kampé
de Fériet hypergeometric series. However, we use our notations, since they
seem to be more convenient for our purposes. Note that in formula (3.4) of
Tratnik [12] the “z;” must be replaced with “—z;”.

2. In the case that ¥ = 1 and v < m, K,(z,m,q) coincides with
K,(z,m,q) and also with the classical univariate Krawtchouk polynomial
of uth degree and parameters m and g (see (22), (23), and, for example,
Szeg6 [10, formula (2.82.2)]).

3. Suppose m > 1.

(a) The elements of K, 4 constitute a system of orthogonal polynomials
with respect to the multinomial distribution M(m,q) if and only if £ = 1
[see (26)].

(b) The elements of Ky, and Ky, constitute a biorthogonal system
with respect to the multinomial distribution M(m,q) [see Tratnik [12, for-
mula (3.9)] or (27)].

4. There is a formula for A*M (w,n — |ul,q) (resp. for a,(q)), containing
the term K,(w,n,q) (resp. the terms K,(w,n,q) for |w| < n) [see (21)
and (7)].

In the following proposition, we provide some alternative formulae for
the Krawtchouk coefficients of P°» with parameter ¢q. Let P(u) be the uth
factorial moment of S,,, defined by

By = Y, P(Sn=w) H[

k w
( ) u'] (6)
wezi r=1 Ur

Proposition 1 If1 < |u| <n and R € (0,00)*, then

aula) = 3 P(Sa=w)Kuwn,q) ™
wl<n
—oll (I E
ST orCE 10901 (TR Eas P

T (n =) (=9)* ™" b (9)

(u—v)(n — |u|)!v!

v<u

1 27 27 ) k
= e ex — 1 UpT
(27r)kR“/o /0 p( 7;1 " T)
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n

x [1 (1 + Z Pir — qr) ’“) dry...dzy.  (10)

j=1 =
Remark. We have ag(q) = 1 and, for r,s € {1,...,k} with r # s,
ae,(q) = —m(rq), (11)
n
Geptes(q) = M(r@)n(s,9) =D (@ — Pjr)(@s — Pjs), (12)
j=1
1
aze,(@) = 5(n(ra)”—2(rq). (13)

Hence My(n,q) = M(n,q) and

M (n,q)({w}) = M(w,n,q [ Z% r.4) ( rlw| + qowy —an)]-

= narqo

Observe that Mi(n,p) = M(n,p). For t > 2, M(n,q)({w}) can be evalu-
ated by using (4), (8), and (21).

2.2 The bounds for the distances. We use the following notations: For
re{l,...,k}, let
n(r,q) = 272(r,q) +m1(r, 9)%,

5(T,q)=n(nq)min{ . ’2}, C(r,q)=n(nq)min{ ! 2—6}

2ngrqo e 2ngrqo 3
Theorem 2 Lett € {0,...,n—1}. If SF_, \/6(r,q) < e~ /2, then

DRk | Vo)
1- Zf:l \% 65(T7 Q) .

Remark. The proof of Theorem 2 will also show that

t k 1
Ml < 3 (3 yfedtr, q>)]. (15)
j=0 “r=1

Further, inequality (15) remains valid, if ¢ > 1, ¢ = P, and the summand for
j =1 in the first sum on the right—hand side is omitted.

IP5" — My(n, gl <

(14)

The following corollary shows that it is possible to remove the singularity
on the right-hand side of (14).

Corollary 1 Lett € {0,...,n—1}. Then

t+1
PS5 — My(n, g1 < e (t) et+D)/2 (2 Ja(ra ) (16)

where c1(t) = (1 —x4)~! < 2t + 3 and z; is the unique positive solution of
the equation 7! + /2 = 1. Relation (16) remains valid, if t > 1, ¢ = p,
and c1(t) is replaced by
1 2t —1

<

1—3 ~t4+1-vV12+2

where Ty is the unique positive solution of the equation T —3%2/2+ 7 = 1.

af(t) =
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Remarks. 1. We have ¢;(t) < ¢1(t) for t > 1. The inequality given for ¢ (t)
(resp. for é1(t)) is an equality, if ¢ = 0 (resp. if ¢t = 1).
2. In view of (1), we see that

1 1
pSn — —, 1; . 1
1P = M) > g5 na, (12(r.P) mm{np et b an
Further, in the case k = 1, ¢t = 1, and ¢ = P, the bound in (16) has the

correct order; under these assumptions, the next corollary coincides with
Corollary 2 of Ehm [3] (see Subsection 1.3 of the present paper).

In what follows, we write S, = (Sp(1),...,Sn(k)) and set S,(0) = n —
> Sn(r).
Corollary 2 In the case of fized or bounded dimension k, the distance
| PS» — M(n, D)1 is small if and only if

5 _2lnd) _ $ 1 Vwsi(r)
r=0 npr 1 _pr) r=0 nz_)r(l - ﬁr)
18 small.

The following proposition shows that sometimes ||P5» — M(n,p)||; can
be estimated by using results for the univariate case.

Proposition 2 If p;, = b;bl. with b;,b,. € [0,00), for j € {1,...,n}, r €
{1,...,k}, and if T, = XF_, Sp(r), then

k
I1PS — Mo, Bl = | P™ ~ B(n. 35,
r=1 1

Remarks. 1. Under the assumptions of Proposition 2, Ehm’s [3] results
[see (1)] lead to the inequalities

1
5E< | PS5 — M(n, )|l < 2€,

where
[ n ( k k 2 1
= Z Zz_) _ijf") ]mln{ — \_ a]-}
j=1 \r=1 ’ r=1 n(Zle Pr)Po
2. From Corollary 1 it follows that

k

PS"—M n,p 1 < ck® 27, D min{ —
| (n, D) ;7( ) e

b ay

with ¢ = 4/(2 — v/3) and @ = 1. But generally, (18) cannot hold with
absolute constants ¢ € (0,00) and a € [0,1). To verify this assertion, we
assume that the conditions in Proposition 2 hold and let n € {2,3,...},
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k=mn,bj=(nYr_1/m)~ forj € {l,....n},and b} = ... =t} = 1.
Using the notations of Remark 1, we then have

¢ = i1 1/5? 1
Cj=a 1/ o

whereas c£/n'~? is the value of the right—hand side of (18).

Theorem 3 Lett € {0,...,n—1}, c3 = ﬁg(pﬂ/wm). IfFSF_ \C(rq) <
3712, then

IPS» — My(n,q)llee < 3FD/2 <H mm{ 1 4e}>1/2
r=1 nCIr(IO 3

(Er 1 C(Ta q))t+1

. (19)
1 - Er 1 3C(T7 Q)
3 Proofs
Proof of Theorem 1. Inductively it is easy to show that
m k
Z A*M(w,m,q) z (1—|—qu —1> H(zr—l)“T. (20)
wEZk r=1
Hence, if |z, — 1| < 1 for all 7 € {1,...,k}, then
Z P(S, =w)z"
weZk
k n
(p] —qr)(2r — 1)
= (14+)) ¢z — ) < T u )
( ET ' 1;[1 1+E7‘ 19r(2zr — 1)
n—u| k
= 3 a1+ > arler - D) LG -
‘u|§n r=1 r=1
— Z ( Z ay(q) A" M (w,n — |u|,q))zw,
weZk lul<n
giving the assertion. [ |

The following two lemmas are devoted to some useful properties of the
Krawtchouk polynomials.

Lemma 1 If jw| < m and |u| < m, then

ul
m!q" g
Ky(w,m,q) M(w,m,q) = m A"M(w,m — |u|,q). (21)
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Further, if |lw| < m, then

m—|w| k
Z K w m q (1 - Z qrzr> H(l + qozr )" (22)
lul<m r=1
and
- m—|w| k k wy
Z Ky(w,m,q) z (1—Zq,nzr) H(zr+1—2qszs) . (23)
u|<m r=1 s=1

Proof. Using (4), it can be shown that, for |u| < m,

> Ku(w,m,q) M(w,m,q) 2"

wl<m
m!lq _mqg qy 1\ Ur
i (1+2qr n)" JICEDERCD

Relation (21) is proved by using (20). The proof of (22) is similar to that of
(24). We now verify (23). For |w| < m, we have

k m—|w| k k Wr
(1 - Z quT‘) H (Zr +1- Z QSZS)
r=1 r=1 s=1
k mf‘w| k Wy w’r k Wy —VUp
= <1 — Z quT> H [ ( >sz (1 — quzs) ]
r=1 r=1 “v,=0 Ur s=1
k m—lolr k /o
.
s (e ()
v<w r=1 r=1
[}

_ (m= D =0 [ ()] oss
QPP DI e e h}l()]

v<w || <m—|v|

- T ¥ u_v|v| Q)\u|_)' [H(w)]z

Ju|<m v<u

Here, the latter equality follows from the substitution 4 = v+ 9. The lemma,
is proved. [ |

Lemma 2 The relations

S XS M) Kawmg) Ko m,a)] o

lul<m [v|<m ©|w|[<m

= [1 +q3 i @ryrzr + Qo ( i qryr) (ilqrzr)]m (25)

r=1 r=1

w|| qu—l—vfw q|w+u\ )

B m! |u — w!
N Z Z ( Z w!(m—|u|)!(u—w)!((1))—w)!

lul<m |v|=|u| ~w<uAv
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are valid. Further, for lu| < m and |v| < m,
5u,v m! qu q(\)u|

z M(w,m,q) Ku(wamaq) Kv(wama q) = U'( |U|)' )

lw|<m

(27)

where 0y s the Kronecker symbol.

Proof. Equality (25) is easily shown by using (22). A further computation
of the right-hand side of (25) leads to

i <7:) (1 +q3 i QTyrzr)j [qo ( i qryr) (i qrzr>

j7=0 r=1 r=1 r=1

m—j

wHa+d 2\W|+m—j

m! (m — i)! . ~
- Yy oy oy g

! — IENE)
=0 |w[<j |al=m—j [3/=m—j w! (j le)uv

= > > X

|a|<m [o]=|a] |w|<m—|a|

~ iy 2 0t i 5
m)! |U|' qw—f—u—l—v qo‘w|+‘u| yw—l—u zw—f—v

w! (m — |@| — |w|)!a! 9!

Here, the latter equality follows from the substitution j = m — |@|. Substi-
tuting @ = v — w and ¥ = v — w and observing that, here, |v| = |9| + |w| =
|a| + |w| = |ul, (26) is shown. Relation (27) is due to Tratnik [12, for-
mula (3.9)] and can easily be verified by using (22) and (23). The proof is
completed. [ |

Remark. For k = 2, similar versions of (21), (22), and (27) can be found
in Takeuchi and Takemura [11, Section 3].

Proof of Proposition 1. Let |z,| < 1/2 for all r € {1,...,k}. By (3) and
(23), we get

> au(q) 2

u/<n

(=) T (1 o [ B )

r=1 j=1 r=1 Es 1 9s%s

= ZP(Snz (1 zk:q ) |w|ﬁ(zw+1—zk:qsz5)wr

|w|§n r=1 r=1 s=1

= ¥ (X P =0 Ralwnia))

lul<n *|w[<n

giving (7). Using (3) we obtain (8):

Y llau(e) 2t =Y e - 3 aule) "

1<]ul<n r=1

i Zr(i — > l_n[ (1 + i(pj,s - qs)zs)

r=1 1+ Zs 1 (pJ, — qs)%s j=1 s=1
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= —i i (i(qr —pj,r)zr)m > aula) 2"

j=lm=1 ‘“r=1 lu|<n
u n k
- o[ 2 (R e - nn ) ][ £ w2
U—v n K
- -z ggu_v"(gg i) Jaul)]

Using the equality 35|, <y puyz®/ul = TTj=1(1 +°F_ pjrz) and (3), we get

Y aulg) 2 = (1 - i%zr)n ﬁ (1 + M)
r=1

ul<n j=1 1= et Gz
k n—|v|
— K@) o
= Z 7 z <1 - Z qrzr)
w|<n r=1
YD (n — o) (—9)" pw) o
w! (n — |v| — |w|)!v!

w|<n |w|<n—|v|

) (0~ o) (=0 gy
= 2 (Z (u—v)(n— |ul)!o! ) ’

ul<n “v<u

giving (9). Equality (10) follows from (3) and Cauchy’s theorem. The propo-
sition is proved. ]

For the proof of Theorem 2, we need the following three lemmas.

Lemma 3 Let Ip(z) = 350 (2/2)?™/(m!)? be the modified Bessel function
of the first kind and order 0, B(z) = Iy(z)e™®"/4, (z € R). If1 < lu] <n
and vo(r,q) > 0 for all v € {1,...,k}, then

(n—|ul)/2 |,,|lul/2 &k _ U /2
(@) < " [u Hl(w(r,q)Jrn '“'w,qf)
1

(n — |u|)(n—lul)/2 u - 2n

2u? (n — |uf) y1(r, ¢)?
) ﬁ(\/IU\ (2ny2(r,q) + (n — [u]) 91 (r, q)z)ﬂ'

Proof. From (10), it follows that, for 1 < |u| < n and arbitrary R € (0, 00)*,

1 27 2w X .
lau(q)| < W/o /0 h(Bue®s, .. Rye™)| dey .. dey.

where h(z) = [17=, [1 + =F_1(pjr — @)2]. Let a € (0,00) be arbitrary.
Using cos by cosby + sinby sinby = cos(by — by) € [—1,1], 1+ by < e for
b1,b2 € R, and Cauchy’s inequality, we obtain

|h(R1€™®,. .., Rye'™)|
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an/2 H [O‘ + 20‘2 Pjr — qr) Ry cos z,
: 1/2
tad, Z Pir — 4r)(pjys — 4s) Re Ry cos(ar — xs)]
r=1s=1
; n(a Doy )R, °(s VR :
< an/2 exp —arzl’h r,q) Ry cos z, + ) ; Ya2(r, q) R, )

Since

k k 2 k 2 k 2 k 2
SosBa). () (S (5
r=1 r=1 r=1 r=1 r=1
for b, € [0,00)F, and Iy(z) = & [7" exp(z cosv) dv for = € R, we get

15—, Blam(r,9)R,)
an/? Ru

2
X exp (@ E(ZR \/20472 (r,q) + a®v1(r, q)? ) )

r=1

lau(q)] <

Finally, for r € {1,...,k} and € > 0, set

n—|ul+e 2uZ + €
= Ry = 2 2
n |U’| (2(1’}/2(7", Q) +a ’Yl(Ta Q) )

and let € tend to zero. The proof is completed. [ |

Remarks. 1. We have 0 < (z) = (|z]) <1 for z € R.
2. From Lemma 3, we get the inequality

1)/ |y lul/2

(12 — [u]) (P T2 2Iul/2

lau(q)] < H n(r,q)"/? (28)

for 1 < |u| < n, being also valid in the case of y5(r,q) = 0 for some r €

{1,...,k}.
Lemma 4 The following inequality is valid:

k

|QL|U| < exp (ZUT) |Z—l' (29)

r=2

Proof. We may assume that k € {2,3,...} and u € N*. For s € {1,...,k},
let vs = >°7_; up. Using the inequalities

bhr b
L <6\/b2<b1>, bleN, b2€{1,...,b1}
2

b% (by — by)br—b2 —
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(see Roos [6, Lemma 3]) and 1+ z < €”, z € R, we get

|U||u‘ i U?«’lﬁl k—1 |ul!
—_— = —— < e" "/ us... —
ut Tl;[l o u T ¢ w2 R
1 ! b !
< exp 52(%"‘1) al < exp Z:Ur o
r=2 r=2
The lemma, is proved. |

Lemma 5 The following inequalities hold:

1ol 1/2 |w| U pym 1/2
Jasmmgl < () e ()
(m + [ul)! g* gy (m + |u])mHul gu g
(30)

Proof. Using (21), Cauchy’s inequality, and (26), we obtain

(m + Ju])! g* g\ 2
ul'm!

(14 m.q) s

< Y Mwmtlulg)[Kulw,m+ul, )]

[w|<m+]u]
2 k
_ (m+\u|)!quqo|u| Z [H ur \1wl! o —jul
ul'm! i Lt \wr w!
2|u| k
(m + |u))!q" g5 [ Uy ] [wl! 5 ol
<
>~ U!m! Z;L ,,.1;[1 wy |v§w| ! q qO

(m + |u))! g* g
ul' m!

9

giving the first inequality of (30). The second inequality follows from (29). m

Proof of Theorem 2. Let I = {r € {1,...,k}|¢r < e/(4nqp)} and I¢ =
{1,...,k}\ I. For u € Z'j_, let v(u) = >, ur e,. To simplify notations, we
write v for v(u). Using (30) and the inequality 1 + z < e*, z € R, we get,
for |u| <mn,

IA“M(n —Jul,g)llh < 2P A" M(,n - |ul,q)lk
- 2|U| <e|uv| (u _ U)ufv (n _ |u‘)n|u>1/2
} (n— o) g*=v g5 "
and
nn—|v| (u _ U)u—v
(n—Jo))rPlur =
Using

[ (@)2 (31)

uY u!
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(see Roos [7, Lemma 4]), (2), and (28), we obtain

|PS» — My(n,q)|h < Z > lau(@) 1AM (-, — |ul,q)llx

J=t+1 |ul=5
|U|'“‘n" ol (u — v)u= 2 1 (enlra) "
<Y ¥ ~Teatra)= IT (5o2)
j=t+1 |ul=j = oDl T rere \ 2drdo
t+1
P /2<z£f:1 5(r,q>>+
B 1- Ef:l \Y 66(7'7 q)
giving the assertion. [ |

Proof of Corollary 1. The assertions can easily be shown by using (14), the
inequality || P5» — My (n, q)|l1 < 1+]|M¢(n, q)||1, the remark after Theorem 2,
and Bernoulli’s inequality. [ |

Proof of Corollary 2. For r € {0,...,k}, Ay ={j € {1,...,n}|pj, >
p.},and A- ={1,...,n}\ A4, we have

72(r,p) < ( > (pj,r_ﬁr))2+( > @ —pj,r))2

JEAL JEA_

_ (M, p,.) < 2np, (1 - 7,

and y2(r,p) < np,(1 —D,) (see Roos [6, proof of the remark in Section 1.2]).
This leads to

mtemmin (ot 1) 2 3 ()

Using (17), we get

2
Sn ¥a( Tp
|PS* — M(n, >||1_124k+1 (2 pn)'

np,(1

For a similar upper bound, we may suppose that p, > 1/(k + 1), which can
be achieved by interchanging of components. Hence, by Corollary 1,

. k(k+1) Y2 (r, D)
|P% — M(n,p)|l1 <
;) np,(1-5,)’

completing the proof. [ |
Proof of Proposition 2. For r € {1,...,k}, let

Dy Pjr .
qr = — = k ) (]E{la-'-an})'
Zs 1Ps Zs:l Pjs
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Then
n k
Ry G
wEZﬁ_ j=1 r=1 r=1
= Y Pm =) (L) = X B P =
j=0 r=1 |w\<n
and
> Mn)({wh = = ¥ e s (n S SEDES
’wEZk |w|<n r=1
The proof is easily completed. [ |

For the proof of Theorem 3, we need the following two lemmas.

Lemma 6 Let c3 = %(1 +/7/2) and a € (0,00). Then

/2 1 (m+1)/2
/ exp(—2asin® z) sin™ z dr < min{g, c3 w(w) }
0

4ae
(32)

Proof. Shorgin [9, proof of Lemma 6] has shown that, for m € N,

/2 (m+1)/2
/ exp(—2a sin? z) sin™ z dz < e (1 )= ) (1) .
0 2 2m /) \dae

Using the inequality 2z /7 < sinz for z € [0, 7/2], we get, in the case m = 0,

/2 /2 1 1/2
/ exp(—2asin2m)d:c§/ exp(—%aw)dw<cyr( /3) .
0 0 ™ dae

This gives one part of (32). The remaining part is obvious. The lemma is
proved. [ |

Lemma 7 Let c3 be as in Lemma 6, I C{1,...,k}, and I¢={1,...,k}\I.
If u #£ 0, then

IA*M (-, m, q)|le0 < ( m )m/2(H(4e)uT/z)

m+ |u| rel

y H[ (M)WH)/Q]. (33)

rele m+ |U|)Q7~QO

Proof. By (20) and Cauchy’s theorem, we have

||AUM( m,q ||oo > / / d$1 da:k,
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where, for z € [—, 7]¥,
k
H(.’L‘) — ‘1+Z zmr o ‘ H |€zxr 1|m
r=1
m/2
= < 0+2CIOZCITCOS$T+ZZQT(ISCOS —375))
r=1s=1
x 2l H | sin(z, /2)|*
m/2 k
(i) f

r=1

Here, we used the relations 1 — cosh; = 2sin?(b;/2) and cosb; cosby +
sinby sinbs = cos(by — by) <1 for by, b € R. Hence

2\u|+k

HAUM(',m,q)Hoo > fu m( )

where, for € € [0, 00),

/2 e/2 k
fu,e( / / (1 — 4qq Z gy Sin xT) H sin%" z, dzi ...dTk.

r=1

For € € (0,00) and arbitrary a € (0, 00),

efla=1)/2 F /2 . '
fuelg) < o H (/0 exp ( — 20eq, qo sin? a:r) sin" x, d;cr>
r=1
1 (ur+1)/2
T ]
feTe €qrqoe

where g(a) = a~(F9)/2e0=1)/2 1 — S~ o (up + 1), and #I denotes the
number of elements of I. Here, we used the inequality 1 +b < e for b € R
and (32). Now, g(«) attains its minimum at oy = (€ + v)/e. Substituting
a = qgp, we obtain

k €7 (e + |u))*”2 2 # ] [ (max{ur, 1/3}>(u“+1 /2

<7
fuelg) < (e + )2 jere L \4(e + [ul)grq0

Application of the inequality 1+b < e® leads to the desired result in the case
m # 0. For m = 0, the assertion is proved by letting € | 0 in the inequalities
above. [

Proof of Theorem 3. Let c3 be as in Lemma 6, I = {r € {1,...,k}|¢ <
3/(4enqo)}, and I¢ = {1,...,k} \ I. Using (28), (33), (31), the inequality

(max{m, 1/3})™+1

m—1
- <3m,
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and

I ()" Tt )

rere "qrqo r=1

we obtain (19):

1P — Mi(n, q)lloo < Z > lau(@IA"M(,n — Jul, q)lloo

J=t+1 ju|=j

> 3 (et ) T (o () ™)

J=t+1 |ul=j u! rel relc

3(t+1)/2 ch ( H min{ 1 %})1/2 (k)

1 ngq’ 3 1=k /3(rq)’

IN

<

completing the proof. [ |
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