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1 Introduction

1.1 Motivation

The compound Poisson approximation of the distribution of the sum of inde-
pendent but not necessarily identically distributed random variables has a long
history. Such an approximation is reasonable when the summands are nonzero
with small probabilities. In fact, in this case, the approximation error between
the involved distributions is small. Though several upper bounds for different
distances are nowadays available, there remain some difficult tasks. For instance,
there is the problem to give a good estimate for the constant in the upper bound
by Zaitsev (1983, formula (6), p. 658); in fact, he improved the order of Le Cam’s
(1965, Theorem 3, p. 188; see also 1986, Proposition 4, pp. 413-414) bound by
using the so called “method of triangular functions”, which was invented by Arak
and Zaitsev in the 1980s in order to find the optimal rate in Kolmogorov’s (1956)
second uniform limit theorem. For details of this method, see the monograph by
Arak and Zaitsev (1988). Further developments can be found, for example, in
Cekanavi¢ius (2003) and his previous papers. Because of the complexity of this
method, constants are given not in detail; even if one follows the proofs by taking
into account explicit constants, the final constant would be very large. In order
to avoid this difficulty, Hipp (1985; 1986) invented his own method and proved
some estimates, which are not easily comparable with the Zaitsev bound. As
approximations, he not only considered the compound Poisson distribution but
also finite signed measures, which can be derived from an expansion in the expo-
nent. Apparently, such approximations were first considered by Kornya (1983)
and Presman (1983), wherefore we speak of Kornya-Presman signed measures.
However, observe that the signed measures used by Kornya and Presman are
slightly different (see also Hipp 1986). Further results in this direction came, for
example, from Kruopis (1986), Cekanavicius (1997), Barbour and Xia (1999), and
Roos (2002). Note that Barbour, Chen, and Loh (1992) and Barbour and Xia
(1999; 2000) applied Stein’s method but obtained some unwanted terms in their
bounds, some of which could be removed by using Kerstan’s approach (see Roos
2003). However, it should be mentioned that, in contrast to Kerstan’s approach,
Stein’s method also works in the context of dependent variables. In the latter

paper, a more detailed review of known results can be found.

This paper is devoted to a refinement of Hipp’s (1985; 1986) method. Moti-
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vated by the need for explicit approximation results for the individual aggregate
claims distribution within the context of risk theory, Hipp has used concentration
functions in his estimates of the Kolmogorov and stop-loss distances. The aim
of the present paper is to present alternative proofs and smaller constants in the
bounds. Additionally, we provide an improvement of the constant in Le Cam’s
(1986, Remark on page 408) bound for concentration functions of compound
Poisson distributions. But we also follow Hipp’s idea to give an estimate of such
concentration functions with the help of Kesten’s (1969) concentration function
bound for sums of independent random variables. In fact, under the assumption
that the summands are identically distributed, we present a smaller constant in
Kesten’s bound, the proof of which is based on a slight sharpening of Le Cam’s
(1986, Theorem 2, p. 411) version of the Kolmogorov-Rogozin inequality; see
Kolmogorov (1958) and Rogozin (1961, Theorem 1, p. 95). For the theory of
concentration functions, the reader is referred to Hengartner and Theodorescu
(1973), Petrov (1975; 1995), and Arak and Zaitsev (1988). Note that, in the lit-
erature, many contributions on upper bounds of concentration functions can be
found. But only a small number of them deal with explicit constants; for instance,
see the recent papers by Salikhov (1996) and Nagaev and Khodzhibagyan (1996).
Though it is often possible to derive bounds for concentration functions for sums
of independent but not necessarily identically distributed random variables, in

this paper, we only need to consider identically distributed summands.

1.2 Some notation
1.2.1 Concentration functions

The concentration functions Conc(@; -), Conc™(Q; -) : [0,00) — [0, 1] of a prob-
ability measure @) on R are defined by

Conc(Q;t) = supQ([z,z +1t]),

zeR

Conc™ (Q;t) = supQ((z,z +1]), t € [0, 00).

zER

In the appendix (see Section 4), we have listed some basic properties of concen-

tration functions.
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1.2.2 Stop-loss transforms

For a finite signed measure @@ on R, let |Q| denote the total variation measure
and Fo = Q((—o0, -]) the distribution function of Q). The stop-loss transform ¢
of @ at point ¢t € R is defined by

molt) = [ (e =1). dQ(a).

Here and throughout this paper, z, = 2V 0, z Vy = max{z, y}, and z Ay =
min{z, y} for z,y € R. Whenever we deal with a stop-loss transform mg, to
ensure that mp has finite values, we assume that [, [z|d|Q|(z) < oco. For a
real-valued random variable X with distribution £(X) and distribution function
Fx = Fyx), we set Fx = 1 — Fy; if E(X) is finite, the stop-loss transform

mx = Te(x) of X is finite and satisfies, for ¢ € R,

rx(t) = B(X — 1), = /too Fylx)dz = B(X,) — /0 Fy(z)dz,

where, as usual, “[’ = — f;” for z,y € R Similar formulas for g are possible,
when @) is a finite signed measure. Note that, in the context of stop-loss rein-
surance, a risk X (i.e. a non-negative random variable) is divided between the
ceding company and the reinsurer in such a way that the reinsurer has to pay the
excess (X — t), over an agreed retention ¢ > 0, whereas the ceding company has
to pay the remaining amount X A t; hence mx(¢) denotes the expected claim of

the reinsurer.

1.2.3 Distances

As measures of accuracy, we consider the following distances

dxm(Q1, Q2) = sup |Fy, (z) — Fg,(z)], (Kolmogorov metric),
T€R

dsL(Q1, Q2) = sup|mg, (t) — 7, (t)], (stop-loss metric),
teR

between two finite signed measures (; and (s on R. For two real-valued random

variables X and Y, we write
Sometimes it will be necessary to consider also the Fortet-Mourier metric

dpv(X, Y) = drm(L(X), L(Y)) = /R |Fx(z) — Fy(z)|dz
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between X and Y and an /;-version of the stop-loss metric
ds,(M, N) = ds,(L(M Z |7 (n) = 7n(n)],
between random variables M and N concentrated on Z, = {0,1,2,...}.

1.2.4 Exponentials

In what follows, we need exponentials of finite signed measures. If () denotes a

finite signed measure on R, then we set

<1
(@) =35 Q"
0

where, for j € N={1,2,...}, @ denotes the j-fold convolution of @) with itself
and Q*° = g, is the Dirac measure at point zero. Note that exp(Q) is a finite
signed measure. Is is well-known that, for finite signed measures (; and @,
we have exp(Q1) * exp(Q2) = exp(Q1 + @2); for example, see Hipp (1985; 1986)
and Hipp and Michel (1990, Kapitel 4). A proof of this and other similar facts
regarding finite signed measures can easily be done with the help of the Hahn-
Jordan decomposition and characteristic functions. For a probability distribution
@ on R and parameter ¢t € [0, 00), we define the compound Poisson distribution
by

CPo(t, Q) = exp(t(Q — &) = Y _po(j, t) Q7

where po(j, t) = e 't /4.

2 Results

2.1 Hipp-type results

In the following proposition, we are concerned with the approximation by a com-

pound Poisson distribution.

Proposition 1 Letn € N and X4, ..., X, be non-negative and independent ran-
dom variables. Set S, => " X; and, for alli € {1,...,n},

pi = P(X;>0), Qi=P(X;€-]X;>0),
po= [edQa), W = [e2dQua),
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1, if Q; is a Dirac measure, , c—1
c = CZ- = .
2, otherwise, 4
Let
n 1 n
A=) i Q=3 mQ, H=CPo(} Q)
i=1 i=1
- 1 — - 1=p(l=p N -~
A= IS paop), 0=i 2P gocpo, 9.
25 A 2
If, for all i, p; < 1, then
N -
i=1 L
e »? u? N
< - [ I 1 —
(o). H) < T Do (ki ) ) Cone (8 ) (2

Remark 1 (a) Inequality (1) can essentially be found in Hipp and Michel
(1990, p. 51); see also Hipp (1985). Exactly the same result can also
be derived by using the proof by Hipp and Michel. The bound (2) is
slightly sharper than the one in Hipp and Michel (1990, p. 54). In fact,
for non-degenerate probability distribution @);, their bound contains the

term pu; + u?) /(2u;) instead of the smaller value

1 @)
Mi‘i‘—(MiJr al )
4 Hi

(b) It is well-known that, under the assumptions of Proposition 1, the distribu-
tion £(S,,) is smaller or equal to H in the stop-loss order, i.e., for all t € R
we have 7g, (t) < mg(t); see Hipp and Michel (1990, p. 43). This maybe
helpful when dealing with the stop-loss distance.

(c) As pointed out by Hipp (1985), in order to obtain higher accuracy, the
concentration functions in the upper bounds of Proposition 1 should be
evaluated rather than estimated. Indeed, in many applications, where Q
is an arithmetic probability distribution with Q({h, 2k, 3h, ...}) = 1 and
h € (0,00), Conc™ (H; p1;) can be evaluated by using Panjer’s (1981) re-
cursive algorithm. Nevertheless, we provide some general upper bounds for

concentration functions in Section 2.3.
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(d) Note that Zaitsev (1983, formula (6), p. 658) has shown that

dxm(L£(S,), H) < ¢ max p;,

1<i<n

where ¢ denotes an absolute constant.

Remark 2 The situation in Proposition 1 can be interpreted within risk theory:
let us consider the individual model with a portfolio of n € N independent policies,
producing the non-negative individual claim amounts X,..., X,,. Each X; can
be written as a random sum X; = 22/21 Ui. Here, for ¢ being fixed, the U;
for £ € N are positive, independent and identically distributed random variables
and M, is a Bernoulli random variable independent of the U; , with P(M; =1) =
1 — P(M; = 0) = p;. The p; represents the probability that risk i produces a
positive claim, wherefore we can assume that p; is small. Further, £(U;;) = Q;
is the conditional distribution of the claim in risk ¢, given that a positive claim
occurs in risk 7. The aggregate claim in the individual model is defined by the
sum S, of all X;. Frequently the distribution £(S,) of S, is quite involved and
should be approximated by a simpler distribution. Due to the smallness of the p;,
an approximation by a compound Poisson distribution CPo(A, @) is particularly
favourable. Note that we obtain this distribution by Poissonization: if, in the sum
X, = ZkM:ll Uik, we replace M; with an independent Poisson distributed random
variable N; with the same mean as M;, then we obtain random variables Y; =
SN Uik Now, L(37,Y;) = CPo()\, Q). From this, we see that Corollary 1
below is applicable. The distribution CPo()\, @) can also be obtained as the
aggregate claims distribution Z]]Vil V; of a suitable collective model: here only
the claims V; and their total number M are modeled. In the present context, the
claim number M has a Poisson Po()) distribution with mean X and the claims
are independent (also of the claim number) and identically distributed random

variables with distribution Q).

The next proposition deals with the approximation by Kornya-Presman signed

measures Hy (see below).

Proposition 2 Let the assumptions of Proposition 1 be valid. Further, set K €
N K
~ (DR k
Hy = exp (;; E— (Qi — €0) >,
(2p;) K+
(K +1)(1 - 2p)

(i, K) = for i € {1,...,n},
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n 2

— (5, K) — m

=1

where we assume that, for all i, p; < 1/2 and 6 < 1. Then

din(L£(Sn), H) < n ) e(e”® ) —1) Cone (H; ), (3)
i=1
n : u? .
dst.(L(Sn), Hg) < nZ(eT(”K) -1) (ui + ¢ (/Li + = ))Conc’(H; wi)- (4)
i=1 ¢

Remark 3 Inequality (3) is better than the one by Hipp and Michel (1990,

27(i,K) and

p. 82); see also Hipp (1986). In fact, their bound contains the values e
Conc (H; (K + 1)p;) instead of the better ones e”X) and Conc™ (H; y;). For
ds.(L(S,), Hg), we found no comparable bounds in the literature; therefore (4)
seems to be new. However, in Hipp (1986, formula (10)), a non-uniform inequality
for the difference of the stop-loss transforms of £(S,) and the signed measures
originally used by Kornya (1983) was presented. Note, as mentioned above, these

signed measures differ slightly from the Hy of the present paper.

Remark 4 The idea behind the use of the finite signed measure H is the fol-
lowing: using the log-series and characteristic functions, it is easy to show that,
fori e {1,...,n},

(=1)k+
k

L(X;) = 0+ pi(Qi — €0) = exp (Z

1

P (Qi — 80)*k)-

Note that, since p; < 1/2, the infinite sum in the exponent converges with respect

to the total variation norm and forms a finite signed measure. We obtain

L(S,) = exp (ii (_1]2k+1pz (Qi—¢ )*k>;

see also Hipp and Michel (1990, Kapitel 4). Therefore, we should expect that
Hg is a good approximation of £(S,,), if K is large. In fact, from Proposition 2,
it follows that dxm(L(S,), Hi) and dsi,(L£(Sy), Hk) tend to zero as K — oo, if

pi < 1/2 and if the respective moments of Q; are finite for all s.

2.2 The main tool for Proposition 1

The following theorem seems to be new.
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Theorem 1 Let X1, Xy, X3,... be non-negative, independent and identically dis-
tributed random variables. Forn € Z, set S, =Y ¢ | X;. Let M and N be Z-
valued random variables with the same finite expectation. Let'Y denote a random
variable in R. We assume that all Y, M, N, X1, Xo, ... are independent.

(a) Then we have
1
dgm(Su +Y, Sy +Y) < 5 dem(M, N)dxu (Y, X1 +Y).

(b) If E(X;) < oo, then

dsu(Sy +Y, Sy +Y) < dg (M, N)E[(X; A X5) Conc™ (L£(Y); X1 + X3)].

Note that the upper bounds in Theorem 1 are small, when £(M) ~ L(N), or
L(X;) =~ €g, or when L£(Y) has a small concentration. Theorem 1 and the tele-
scopic sum decomposition enable us to give results concerning the approximation
of sums of independent but not necessarily identically distributed random vari-

ables.

Corollary 1 Letn € N and X4,...,X,,Y1,...,Y, be independent random vari-
ables. For each i € {1,...,n}, X; and Y; are given by random sums of the form
X; = ZkMz”l Ui and Y; = ZkN;1 Uik, where, for i being fized, the U;1,U;2,U; 3, ...
are non-negative, independent and identically distributed random wvariables and
the M; and N; are random variables in Z, with E(M;) = E(N;) < co. We as-
sume that all M;, N;, U are independent. Set S, =Y | Xi, T, = >, Y; and,
forief{l,...n}, Zi=Y "1 X;+30 .Y

(a) Then we have
1 n
dxm (Sn, Tp) < 3 > " den(Mi, N) dia(Zi, Uiy + 7).
i=1
(b) IfE(U;1) < oo foralli e {1,...,n}, then

ds,(Sn, T) < ZCZSL(Mz‘, N;)E[(Ui1 AU 2) Cone™ (L(Z;); Uig + Ui 2)).

i=1
Proof. The assertion easily follows from Theorem 1 in conjunction with the

well-known telescopic sum decomposition

n

L(Sn) = L(T,) = Y (L(Xi + Zi) — L(Y: + Z1)),

which, in turn, can be shown via induction over n. O

The preceding corollary is used to give the proof of Proposition 1.
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2.3 Concentration function bounds

The following proposition is devoted to Le Cam-type bounds for the concentration
functions of a compound Poisson distribution. The absolute constant (2e)~'/2 in

the bounds is best possible.

Proposition 3 Let QQ be a probability distribution on R. Then, for t € (0, 0o)
and s € [0,00),

Conc(CPo(t, Q); 5) < m, (5)
Conc (CPo(t, Q): s) < m, (6)

where

fs, Q) = max{Q((—o0, —s)), Q((s, o))},
9(s, @) = max{Q((—o0, —s), Q([s, 2))}-

In (5) and (6), equalities hold, when s € (0,1), t =1/2, and Q) = €, is the Dirac
measure at point one such that CPo(t, Q)) = Po(1/2).

Remark 5 From Le Cam’s (1986, Remark on p. 408) more general inequality
for the concentration function of an infinitely divisible probability distribution,

it follows that, under the assumptions of Proposition 3,

Cone(CPo(t, @); 5) < ( e :2T$| . S}))l/ " (7

(see also Le Cam 1965, Proposition 5, p. 183; Arak and Zaitsev 1988, Theorems

2.5 and 2.6, p. 46). Since f(s, Q) > 27'Q({z : |z| > s}), it follows from (5) that
the constant v/2m ~ 2.51 in (7) can be replaced with e~/? ~ 0.61.

The bound (6) can be used to estimate the concentration functions in the upper
bounds in Propositions 1 and 2. However, other bounds can be derived with
the help of a Kesten-type inequality for the concentration function of the sum of

independent and identically distributed random variables:

Proposition 4 Let S, = Y., X; be the sum of n € N independent and identi-

cally distributed random variables X1, ..., X,. Then, fort € [0, c0),
Conc(L(X1); t)

v/ (n+1)(1 — Conc(L(X1); 1)

This inequality remains valid if Conc is everywhere replaced with Conc™.

Conc(L(S,); t) <6.33 (8)
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Remark 6 From a more general result by Kesten (1969, Corollary 1, pp. 134—
135), it follows that, under the assumptions of Proposition 4,
Conc(L(X1); 1)

Conc(£(S,); t) < 4V2(1 + 9¢) (= ConcZ(X0) 1)

(9)

Here, c is an absolute constant satisfying the classical Kolmogorov-Rogozin in-
equality (see Kolmogorov 1958; Rogozin 1961, Theorem 1, p. 95), which states
that, under the same assumptions,

Cc

< .
~ y/n(1 — Conc(L(X1); t))

Conc(L(S,); t) (10)

Since ¢ < 1 (see Remark 8 below), the leading constant in (9) is bounded from
above by 40v/2 < 56.6, which is considerably larger than our 6.33. A further
advantage of (8) over (9) is the factor (n 4+ 1)~%/? instead of n~%/2.

Corollary 2 Under the assumptions of Proposition 3, we have
6.33 Conc(Q; s)(1 —e™)
Vi = Conc(@; 5))

This inequality remains valid if Conc is everywhere replaced with Conc™.

Conc(CPo(t, Q); s) < e '+

Remark 7 (a) The bound (11) can be much better than (5) if ¢ is large and

if () has a small concentration function.

(b) Bening et al. (1997, Theorem 8, pp. 370-371) have shown that, under the

assumptions of Proposition 3,

s+1

\/g )

= () macfs 1}

and ¢,0 > 0 are defined in such a way that the characteristic function
wo(r) = [ dQ(y) of Q satisfies

Conc(CPo(t, Q); s) < c(e, 9) (12)

where

lpo(7)] <1 — ex? whenever |z| <.

In fact, for each non-degenerate probability distribution (), there exist pos-
itive numbers € and § with such a property (see Petrov 1975, Theorem
1.2.2, p. 11). It is easily shown that, under the present assumptions,
max{1,6 1} %2 > 1. Therefore the bound in (12) is often worse than
the one in (11).
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The proof of Proposition 4 is based on a refinement of Le Cam’s version of the
Kolmogorov-Rogozin inequality for the concentration function of the sum of in-

dependent random variables.

Proposition 5 Under the assumptions of Proposition 4, we have

nc : 1 — [Conc(L(Xy); )™ \1/2
Cone(£(S,); 1) < ( ( )))

n+1)(1 — Conc(L(Xy); t

This inequality remains valid if Conc is everywhere replaced with Conc ™ .

Remark 8 From the more general Theorem 2 in Le Cam (1986, p. 411), it follows
that, in the Kolmogorov-Rogozin inequality (see (10)), one can choose ¢ = 1. But
his inequality is even a bit better. In fact, under the assumptions of Proposition 4,

his result implies that

. 1 — exp(—n(1 — Conc(L(X1); 1))\ /2
Conc(L(Sy); t) < ( n(1l — Conc(L(X1) ; t)) )

However, it is easily shown that this bound is always larger than or equal to the

one of Proposition 5.

3 Remaining proofs

In what follows, we use the forward difference operator Ab : Z, — Z, of a
sequence b: Z, — Z,, which is defined by Ab,, = b, — b, 11 for n € Z,. Powers
of A are understood in the sense of composition, i.e. we have Afb = A(A*~1p)
for k € {2,3,...}. Sometimes we use the following version of Abel’s summation

formula.

Lemma 1 Forn € Z, let a,,b, € R, A, = >0 ja;. If Y00 |an| < oo and
oo o 1bn] < o0 then

f:anbn = ian iAbm = iAmAbm.
n=0

n=0 m=n m=0

For the proof of Theorem 1, we need the following lemma.

Lemma 2 Let the assumptions of Theorem 1 be valid and set, fory € R, b,(y) =
Fs (y) and, forn € Z,, A, = Fy(n) — Fx(n).
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(a) Fory € R, we have
FSM( FSN ZA Ab

(b) If E(X1) < oo, then, fort € R,

oo

o () = T () = D () = () [ 8%,01(0) dy,

n=1 0

Proof. We may assume that, for all 7, X; # 0 with positive probability. Assertion
(a) follows with the help of Abel’s summation formula. Here, it has been used
that Y / Fs,(y) is a renewal function, which is bounded on intervals of finite
lengths (for example, see Feller 1971, p. 359). We now prove (b). We may assume
that ¢ € [0,00). Then

T (1) = sy (£) = / T (Fsy (y) — Foyy (y)) dy = / (Fsn (y) — Fsy () dy,

where we used that, under the present assumptions, E(Sy) = E(Sy) < oo.

Application of Abel’s summation formula to assertion (a) gives

Foul) = Fsu0) = 3 (30 An) 3% (0)

o

= Z[WM(TL) — 75 (n)]A%b, 1 (y)

n=1
for y € R, where we took into account that >~ |A,] < E(M + N) < oo and
that, for k € Z

= Ay =7 (k) — 7y (k).
n=~k
To complete the proof of (b), we use Fubini’s theorem, which can be applied,

M
I

since

/OtZWTM( ) — (1)) A%, 1 ()] dy < 4E( M+N/ZFSn )dy < 0. O

Proof of Theorem 1. Let b,(y) and A, be defined as in Lemma 2. Using

Lemma 2(a), we obtain, for all ¢,z € R,

PSy+Y <z)—P(Sy+Y <z) = E[Fs,(x—=Y)— Fs,(x—-Y)]

- E[iAnAbn(x—Y)

= ) Au(E[Ab,(z —Y)] - 0),



On Hipp’s compound Poisson approximations 14

where the latter equality follows from Fubini’s theorem and E(M) = E(N) < oo,
ie. Y > A, =0. It follows that

dKM(SM +Y, Sy + Y) < dFM(Ma N) sup sup ‘E[Abn@? - Y)] - C|-

neZ 4 z€R
Since the X; are non-negative, we have, for alln € Z, and x € R, Ab,(z—Y) > 0,
giving
0 < E[Ab,(z—Y)]
P(S,+Y <z)—-P(S,11+Y <x)
E[Fy(z — Sn) — Fxy4v(z — Sa)]
< dgm(Y, X1 +Y).

Hence, if we set ¢ = 27 'dgm(Y, X1 +Y), we obtain
1
|E[Ab,(z —Y)] —¢| < 3 dem(Y, X1 +Y).
Assertion (a) immediately follows. Now we prove (b). For ¢ € R, we have

Tou+y(t) = Tsyrv(t) = E[(Su+Y —1t)y —(Sv+Y —1)4]
= Elrs, (t—Y) —7msy(t —Y)]

o0

= E[Z(TrM(n) —WN(n))/OtY A’by_1(y) dy|,

n=1
where we used Lemma 2(b). Since the X, are non-negative, independent and
identically distributed with finite mean, mg, (y) is a convex sequence in n € Z
for y € R being fixed, i.e. A%mg, (y) > 0 for alln € Z, (e.g. see Miiller and Stoyan
(2002, p. 160)). In fact, this follows from the equalities

A27TSn (y) = ’n-Sn+2 (y) - 27TSn+1 (y) + ﬂ-Sn (y)
= E[(Sn + Xot1 + Xnt2 = 9)+ — (Sn + Xn1 —9)+
= (Sn+ Xnr2 —y)4 + (Su —y) 4],

and the obvious fact that, for all o, 5,y > 0,

(@+B—y)s++(a+7—y): <(a+B8+7—y)++ (@—y)4.

t

From this, we see that, for n € N, fofy A?b,_1(y) dy > 0, and therefore we arrive

at
t-Y

ds.(Sy+Y, Sy +Y) < CZSL(M, N) sup supE[ A?b,_1 (y) dy].
0

neN teR
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For all n € N and t € R, we have, by conditioning on the values of S,,_1, X,,, and
Xn—f—l;

t—Y t—Y
E[/O A?b,_1(y) dy] = E[/O [P(Sp-1 <y)— P(S. <)
— P(Sy-1+ Xni1 < y) + P(Sns1 < y)ldy
= [ BlZune(t = V) AL(Sots X X1 ,,0),
where, for x € R,

Zunel®) = /0 (L(oo.91(a) = L(ooyi(a+b)

- 1(_oo,y](a + C) + 1(_00,31](@ +b+ C)) dy

T — a, if a<z<a+(bAc),
B bAc, if a+(bAc)<z<a+(bVe),
B a+b+c—z, if a+(bVve)<z<a+b+e,
0, otherwise

S (b A C) 1(a’a+b+c] (./17)

Here, for a set A, 14(z) =1if x € A and 14(z) = 0 otherwise. This leads to

E| / A%, () dy

< /(b A P(t—Y € (a, a+b+d)AL((Sn 1, X, Xni1))(asb, )
< E[(Xn A Xpi1) Cone™ (L(Y); Xy + Xni1)]-

Assertion (b) follows from the inequalities above. O

The proof of Proposition 1 requires the following three lemmas.

Lemma 3 Let the assumptions of Proposition 1 be valid. Further, let Yi,...,Y,
be random wvariables with distributions L£(Y;) = CPo(p;, Q;) for j € {1,...,n}.
We assume that all X1,...,X,,Y1,...,Y, are independent. For i € {1,...,n}
being fized, set Z; = Z;ZIX]- + Z;.L:HIY]- and 7, = Z; — X;. Then, for all
t €1]0,00),

Conc(L(Z]); t) < Conc(L(Z;); 1), Conc(L(Z;); t) < 7rZQCOM(I;I; t).

1—p;

The above inequalities remain valid, if Conc is everywhere replaced with Conc™.
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Proof. For the proof with respect to Conc™, see Hipp and Michel (1990, pp. 52—
53) or, for a preliminary version, Hipp (1985, p. 231), where the main argument
is a suitable smoothing lemma for arbitrary probability measures. The proof
is completed by using the continuity properties of concentration functions (see
Lemma 9 below). O

Lemma 4 (a) Let X and Y be two real-valued random wvariables. If p =
E|X| < oo, then

dxm(Y, X +Y) < cConc™ (L(Y); p),
where ¢ = 2. If X is almost surely constant, then we can set ¢ = 1.

(b) Let Y be a real valued random wvariable and let X, X5 be non-negative,
independent and identically distributed random variables with E(X?) < oco.
Then

E[(X1 A XQ) CODC_(ﬁ(Y) ) X1 + XQ)]
(2)
m -
< 2{p+d{p+—))Conc™ (L(Y); ),
(44 £) ) Cone (£(Y); 1)
where p = E(X1), BE(X?) = u® and ¢ = 1/4. If X, is almost surely

constant, then we can set ¢ = 0.

Proof. Assertion (a) was implicitly shown in Hipp and Michel (1990, p. 52); see
also Hipp (1985, pp. 230-231). In fact, the argument is the following: we may
assume that 4 > 0. For y € R, we have

P(Y <y)-P(X+Y <y)| < /R'P(Y <y) = P(Y <y — o) dL(X)(a).

The integrand is equal to P(Y € I(z,y)), where I(z,y) = (yA(y—x), yV (y — )]
is a half-open interval with length |z|. Dividing this interval into smaller ones,
we see that

||

P(Y € I(z,y)) < HConc—w(Y); ),

where, for z € R, [z] € Z is defined by x < [z] < & + 1. Therefore

X
din (Y, X +Y) < Cone™(L(Y); ) E [%] ,
from which (a) follows. Assertion (b) can be shown in the same way. Indeed, we

have

E[(X; A X3) Conce™ (L(Y); X1 + Xy)]
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X; + Xo
1

1
= (B A X))+ SR A XY+ ) Cone™ (£(Y); )

< E[(X1 A Xo) (1 + )] Conc™ (L(Y); p)

and XIAXQS (X1+X2)/2 O

Let Bi(n,p) denote the binomial distribution with parameters n € N and p €
[0, 1].

Lemma 5 For p € [0,1],

p2

dini(Bi(L,p), Po(p)) =2(e7” = 1+p) <p?,  dsu(Bi(L,p), Po(p)) = =

Proof. The assertions are easily shown. Also, see Roos (2001, Proposition 1

and Remark after Proposition 2). O

Proof of Proposition 1. For i € {1,...,n}, let
A i—1 n “
P =L(X;), DB=CPo(p;, Q), M = ( * Pj) R ( * j).
Jj=1

Then, according to Corollary 1 and Lemmas 4 and 5,

%ZdFM(Bi(L pi), Po(pi)) dxm(M;, Qi M;)

=1

R _
5 2 i Cone™ (M[5 )
=1

dxm(L(Sy), H)

IN

VAN

and similarly

dsL(L(Sy), H) < ép? (Ni +¢ (ui + MIEZ)))COHC(M{; 1)

7

Lemma 3 gives
2 ~

Conc™ (M]; ;) < ———— Conc™ (H ; ),
(M5 i) 0 =p) (H; i)

which completes the proof. 0
Proof of Proposition 2. Fori e {1,...,n}, let P, = L(X;),
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Then the telescopic sum decomposition (cf. proof of Corollary 1) gives

diu(B, Hye) <Y sup| (M (P = H)|((=s0,2)| =: T.

i—1 z€eR

Using the telescopic sum decomposition again, we obtain, for ¢ € {1,...,n},

R—PxM!=[ % P— % H(J)]*( P;) = ZM” (P, — HY).

= g j=i+1
Since P; = exp(R®), this yields
M{ (P = Hy) = M!xP;x (50— exp(U?))
= (R+ M! « P, — R) % (g — exp(U"))

_ ( Z M5 (P; — H(’)))*(so—exp(U(“))-

Jj=t+1

In view of Abel’s summation formula, we see that the second convolution factor

is equal to
go —exp(UD) =) al¥ ZA(Z Q" * (g0 — Qi), (13)
r=0
where the coefficients a!” are real-valued and AY) = > oG ol for r € Z,. In

fact, (13) is valid, since it can be shown that B® := 32 |A¥| < oo (see below).
Hence, for i € {1,...,n},

sup |[M!" * (P, — HN)]((—o0, 2])| < B (dxm(R, Q; * R) + 27T).

z€R
This implies

T <> BY(dxm(R, Qi+ R) + 2T),

=1

and therefore, letting B = Y"1 | BY,

(1-2B)T <> BYdgy(R, Qi R).

=1

Here, it has been used that, since M/ % (P; — H}?) is a finite signed measure for
all 72, T' must be finite. In order to give an estimate for B, we use, for a power
series g(2) = Y o0y gi2" with |z] < 1, the notation [|g(2)|| = Y 5oy |gi|. Further,
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we make use of the simple property that ||g(2) g(2)|| < ||lg(2)]|| ||g(2)||, where g(z)
and g(z) are two such power series. For |z| <1, let

o (_1)k+1

G =~ > ——p -1

Then it follows that, for all s € {1,...,n},

B® = —exp(G H

H1—

(2) (Z
z—1 H Z ”G
el 5 )

k=K+1

|m 1

IN

1 .
< — T(ZaK) — 1

giving B < §/2. Since dxm(R, Q; * R) < 4~ n2¢;Cone™ (H ; p;) (cf. Lemmas 4(a)

and 3), we arrive at the first inequality. The second assertion is shown in the

same manner. Here, we may assume that, for all 7, y; < co and p@)

. < oo. Now

ds.(R, Hi) < ZS“P | / (M (P = HD))((y, 00)) dy| = T

i—1 zeR
By using Abel’s summation formula, we have, for i € {1,...,n},
€0 — eXP(U(i)) = ZAWQ:T * (0 — Qi) = ZAY)QET * (80 — Q)™
r=0 r=0

with A” =37 A% for r € Z,. This leads to

n o

MY's (P= H) = (R= 30 M}« (P = H)) « 3 A0QF » (20~ Q)"
j:i'f'l r=0
Hence
e

< i| Z)| sup‘/ QF * (g9 — QZ) * R]((y, oo dy‘+4T).

r=0 z€R

It is easy to see that, for r € Z .,

| [7107 + o~ Q)% e B N ay] =suw [ [T a9 ),

zeR z€eR
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where b (y) = Q:"((—ooc, y]). Proceeding as in the proof of Theorem 1(b), we
obtain together with Lemma 4(b) that

()

T < ii |f17(j)|(2(ui + cé(ui + /Z ))Conc‘(R; 14i) +4T),

=1 r=0 g

giving
©)
2

(1—43 QZB (uz+c< -I—M ))Conc (R; u;),

i
where B =" | B® and B® = "% |A%|. Here, it has been used that T < oo,
which can easily be shown by using the simple inequality

sup [T gy «qy (1)| < sup [mqr ()] Q5| (R)

teR teR
for two finite signed measures @)} and @)}, on R. Similar to the above,

~ 1
B(Z) — H (1 — 2)2 (1 eXp H T(z K) _ 1)’

and hence, we obtain B < §/4. The second assertion now follows. 4

For the proofs of Proposition 3, Lemma 6 below, and Proposition 5, we use a
splitting technique by Lévy (cf. Le Cam 1986, p. 412).

Proof of Proposition 3. Let s € [0,00). The proof is based on the decompo-
sition
Q=c1Q1+ Q2+ c3Qs3,

where 1, @2, and Q3 are probability measures concentrated on (—oo, —s),

[—s, s], and on (s, 0©), respectively, and

C1 = Q((—OO, _5))7 C2 = Q([_S’ 5])7 C3 = Q((87 OO))

Then, for ¢t € (0,00), CPo(t, Q) = *:_, CPo(tc;, Q;) and therefore, by Lemma
8(c) below,

Conc(CPo(t, Q) ; s) < min{Conc(CPo(tc;, @1); s), Conc(CPo(tcs, Q3); s)}-

We obtain

Conc(CPo(tey, Q1); 8) = sup (ZPO(", tey) Q7" ([, z + 3]))

z€R

< ( sup po(n, te )supZQ ([z, z + s]).

neZ 4 Tz€R
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It is well-known that, for y € (0, c0),

1
2e

sup po(n, y) < ; (14)

TLEZ+

E

see, for example, Barbour, Holst, and Janson (1992, p. 262) or Hipp and Michel
(1990, pp. 46-47). Further, for all z € R, it can be shown that Y >° Q7" ([z, z +
s]) < 1. Indeed, if T}, Ts, . .. are independent and identically distributed random
variables with £(7}) = @)1, then we may assume that, for alli € N, 7; < —s, and

therefore
ZQTH([:E’ T +s]) = P( U {ZTZ €z, z +s]}> < 1.
n=0 n=0 i=1

Hence

1
V2etc,

Similarly, Conc(CPo(tcs, Q3); s) < (2etcs)~'/2. Combining the estimates above,

Conc(CPo(ter, Q1) ; s) <

(5) is shown. Inequality (6) can be derived from (5) by using Lemma 9 below.
Since CPo(t,e1) = Po(t) for t € [0,00) and since, in (14), equality holds for

y = 1/2, we see that the remaining part of the assertion is true. O

For the proof of Proposition 5, we need the following lemma, which is similar to
Proposition 2 in Le Cam (1986, pp. 409-410). However, there are some differ-
ences. In contrast to Lemma 6 below, in Le Cam’s Proposition 2, it was assumed

that the summands X; have not necessarily identical but symmetric distributions.

Lemma 6 Letn € N and X1,..., X, be independent and identically distributed
random variables. Set S, => . X;. Let x € R, t > 0 be fized. We assume that
the X; admit the decomposition L(X;) = L(LY; + (1 —1,)Z;) fori € {1,...,n},
where {I;}, {Y;}, and {Z;} are sets of identically distributed random variables
with £(I;) = Bi(1,1/2), P(Y; < z) = P(Z; > x +t) = 1. We assume that all I,
Y;, Z; are independent. Then

1
\/n+1'

Proof. Set 7, = Y7, I; and, for m € {0,...,n}, Z, = Y0, YVi+ >0 " Zi.
For y € R, we then have

Cone (£(S,); 1) <

P(Sn € (y, y +1))

Il
o
5

I
2
s
3
m
<
<
_|_
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< ( sup P(Tn:m)) ZP(Zm €(y, y+t))

mEZ+

1
vn 1’

where we used that sup,,cz, P(T, =m) < (1 + n)~/2 (for example, see Le Cam

<

1986, proof of Proposition 2, p. 410) and that, since T — Zm+1 > t almost surely
for m € {0,...,n — 1}, the events {Z, € (y,y + 1)} for m € {0,...,n} are

pairwise disjoint. O

Proposition 5 can be proved by adapting the proof of Theorem 2 in Le Cam
(1986, p. 411); cf. Remark 8 of the present paper. In what follows, we give an

alternative direct proof.

Proof of Proposition 5. Let ¢t € (0,00) and let z = z; € R be a median of the
distribution function 27 (F(y) + F(y +t)) for y € R, where F is the distribution

function of X;. This means that
Fla=)+F((z+t)—-) <1< F(z) + F(z + 1),
where F(z—) = limyy, F'(y). Therefore a € [0, 1] exists such that
g:=F(z=)4+aPXi=2)=1-F((x+t)—) —aP(X; =z +1).
This leads to
1—-PXi€[z,z+1t)<2¢<1—-P(X;1 € (z,z+1)). (15)

In particular, ¢ < 1/2. Let us assume that ¢ > 0. For y € R, set

F(y)
F(y) = Tl(—ooaw)(y)+1[x,oo)(y),
Fy)—(1—¢q
F(y) = (¥) q( )1[$+t’oo)(y)’
1
By = ;R0 +B©).
2
Fi(y) = Fl@gzq 1z, 214 (y) + 1244, 00) (y), ifg< %,
1z, 00)(¥), if g = %

It is easy to verify that the Fi,..., Fy are distribution functions with
F =2qF; + (1 — 2q)Fy.

Further, the distributions with the distribution functions Fi, F5, Fy are concen-

trated on (—oo, z|, [z + t, 00), and [z, z + t], respectively. Let {Yi,...,Y,},



On Hipp’s compound Poisson approximations 23

{Z1,...,Z,} and {I4,...,I,} be families of identically distributed random vari-
ables with Fy, = F3, Fz, = Fy and L£(1;) = Bi(1, 2¢) for i € {1,...,n}, where we
assume that all Y;, Z;, I; for i € {1,...,n} are independent. Then S, is equal in

distribution to
Y LY+ (1 - L) Z],
i=1

Set T, = >, I and, for m € {0,...,n}, R, = > ", Y;. For y € R, we now

obtain

P(S. € (y, y+1) = ZP (R +ZZ6 y,y—i—t))
< ZP m) Conc™ (L(Rp); t),

where we used Lemma 8 below. From Lemma 6, we see that Conc™ (L(R,); t) <

(m + 1)~%/2. Therefore, using Jensen’s inequality, the equality

m

for m € {0,...,n+ 1} and (15), we derive

. 1 1 1/2 1 — (1 . 2q)n+1 1/2
. < < =
Conc™ (£(Sn); t) < E\/m = (ETn + 1) ( (n+1)2q )

( 1 — [Conc(L(Xy) ; t)]" ™t )1/2
(n+1)(1 — Conc(L(Xy);t)/ 7

where t € (0, c0). In the case ¢ = 0, the upper bound we have just proved can be
set to be one by a continuity argument, since here we have P(X; € [z, z+1]) =1
and therefore Conc(L(X;);t) = 1. The proof is completed by using Lemma 9
below. O

For the proof of Proposition 4, we need the following lemma.

Lemma 7 Let the assumptions of Proposition 4 be valid. For s,t € (0,00) and
a=1-Conc(L(X;); s), we have

Conc™(£(Sy) ; t) < Conc™ (L(X1);¢) > Conc™ (L(Sm) 5 s + )™

Proof. Let z € R be arbitrary and set I = (z, z+1t]. According to Lemma 9(d)
below, y € R exists such that a = P(X; ¢ J), where we define J = [y, y + s].
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Then we have (cf. Petrov 1995, p. 70)
P(S,el) = / P(X,+z€l, X; € J)dL(Sy1)(x)
I—J

+ a/oo P(S, 1+ € 1) AL(X,|X, & J)(z).

—0oQ

where [ —J={z; —2y|z1 €1, 20€ J} =(x —y —s, x —y + t]. This yields

Conc (L(Sn);t) < Conc (L(Xy); t)Conc (L(Sp_1); s+1)
+ aConc™ (L(Sp-1); t).
The assertion now follows by induction over n. 0

Proof of Proposition 4. According to Lemma 9 below, it suffices to show the
assertion for Conc™. Let t € (0, 00). Let us first assume that Conc™ (£(X7); 1) <
B, where 8 € (0,1). Then, by Lemma 9 below, s € [t,00) exists such that

Conc™ (L(X1); s) < B < Conc(L(X71); s).

In particular, we have a := 1 — Conc(L(X;);s) < 1 — 5. Using Lemma 7,
Proposition 5 and the simple inequality Conc™ (£(X1); s +t) < 23, we obtain

Conc™ (L(Sy); t) < Conc™ (L(X1); t) z_: \/((Tln_—l—ﬂl))z :n;ﬁ)

Set 8 = 0.3322. Then simple calculus shows that

n—1

1— 1

Vn+1) (1-5) < 6.33, (16)
=/ (m+1)(1—-28)

giving the assertion in the present case. In fact, it is not difficult to prove that, if

we denote the left-hand side of (16) by f,, then f, < f,41 forn <6 and f, > foi1

for n > 7. Therefore, sup,cy fn = fr = 6.329.... If Conc™ (L£(X,); t) > 5, then

the assertion follows easily from Proposition 5. In fact,

1
\/(m +1)(1 — Conc™ (L(X1); t))
Conc™ (L(X1); t)
ﬁ\/(m +1)(1 — Conc (L£(X;); 1))

Conc™ (L(Sn); t) <

Y

where 1/5 < 3.1. O
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Proof of Corollary 2. The assertion follows from

Conc(CPo(t, @Q); s) < Zpo(n, t) Conc(Q™; s)

n=0

> 6.33C .
< et + Zpo(n’ t) OIIC(Q, 8)
n=1

V(n+1)(1 = Conc(Q; s))’
the simple inequality >°°° po(n, t)/v/n+1 < (1 — e *)/+/t and Lemma 9 be-
low. O

4 Appendix: Concentration functions

For the proof of the following lemmas, see Hengartner and Theodorescu (1973).

Lemma 8 (Basic properties of concentration functions). Let t,s € [0,00) and

X andY be independent real-valued random variables. Then
(a) Conc(L(X); s) < Conc(L(X); s+1),
(b) Conc(L(X); s+1) < Conc(L(X); s)+ Conc(L(X); 1),
(c) Conc(L(X 4+Y); s) <min{Conc(L(X); s), Conc(L(Y); s)}.
(d) The assertions (a)—(c) also hold if Conc is everywhere replaced with Conc™.

Lemma 9 (Continuity properties of concentration functions). Let s € (0,00),
t €[0,00), and Q be a probability distribution on R. Then:

(a) Conc (Q;t) =sup,er Q((z, z+1)) =sup,er Q[z, z+1)).

(b) Conc(Q; ) is continuous from the right; Conc™(Q; -) is continuous from
the left.

(c) Conc(Q; s—) = Conc™ (Q; s) and Conc™ (Q; t+) = Conc(Q; t).

(d) There ezists an x; € R such that Conc(Q ; t) = Q([xt, ¢ + t]).
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