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Abstract
The purpose of this paper is two-fold: First, we introduce a new asymptotic ex-

pansion in the exponent for the compound binomial approximation of the generalized
Poisson binomial distribution. The dependence of its accuracy on the symmetry and
shifting of distributions is investigated. Second, for compound binomial and compound
Poisson distributions, we present new smoothness estimates, some of which contain ex-
plicit constants. Finally, the ideas used in this paper enable us to prove new precise
bounds in the compound Poisson approximation.
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1 Introduction

1.1 Aim of the paper

In principle, the investigation of signed approximations with exponential structure started
in the early 1980s, when Kornya [22] introduced signed compound Poisson approximations.
Kornya’s approximation was based on an asymptotic expansion in the exponent for proba-
bility distributions having positive mass at zero. Independently, Presman [26] used a signed
exponential measure for the approximation of the binomial distribution. Generally speak-
ing, Presman’s approximation was constructed taking into account the logarithmic series for
the nth power of a characteristic function fn(t), (t ∈ R, n ∈ N = {1, 2, . . . }) of a probability
distribution F defined on the real line R. In fact, fn(t) can be expanded in the following
way:

fn(t) = en log f(t) = exp
{

n(f(t)− 1)− n

2
(f(t)− 1)2 +

n

3
(f(t)− 1)3 − . . .

}
. (1)

A signed compound Poisson approximation of the n-fold convolution of F can then be
constructed by choosing a finite signed measure with the Fourier transform similar as in the
right-hand side of (1) but with only the first s ∈ N summands in the exponent.
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The following years were marked by a growing interest in signed approximations, which
can be derived from expansions in the exponent. Considering signed compound Poisson
approximations, Hipp [19] proved that estimates for the total variation distance hold under
very general conditions (see (7) below). Kruopis [23] proposed to apply approximations
based on the expansion in factorial cumulants. Borovkov and Pfeifer [6] considered an
approximation for Markov chains. Barbour and Xia [4] showed how Stein’s method can be
used for signed compound Poisson approximations. In the lattice case, Panjer-type recursive
algorithms for calculational purposes were developed by Dhaene and De Pril [14].

Note that all authors mentioned above considered approximations, which can be derived
from expansions in the exponent taking into account the compound Poisson distribution.
There seem to be only a few publications treating exponential expansions for other proba-
bility distributions. One paper in this direction was published by Bikelis [5], who proposed
an expansion, which involves an arbitrary characteristic function g(t). It reads as:

fn(t) = gn(t) en log(1+h(t)) = gn(t) exp{n h(t)}
(
1− n

2
h2(t) +

n

3
h3(t) + . . .

)
, (2)

where h(t) = f(t)/g(t) − 1. Further, in Čekanavičius [8], an exponential expansion in the
context of the normal distribution was introduced. It is evident that expansions as in (1) and
(2) are also possible for the convolution product of not necessarily identical distributions.

In this paper, we use a compound binomial type expansion of the generalized Poisson
binomial distribution, which is comparable with (2). In principle, the main difference is
that the whole expansion is in the exponent. Note that, though the construction of our
approximations is based on simple ideas, estimating of their accuracy usually is far from
being trivial.

The structure of the paper is the following. In the next two subsections, we proceed with
some notation and discussion of important known facts. Section 2 is then devoted to the
main results. Here, bounds for the approximation error in different distances are given and,
under special assumptions, bounds with asymptotically sharp constants are presented. As
a byproduct, using the ideas of this paper, we obtain some precise bounds in the compound
Poisson approximation. A significant part of the paper is devoted to the refinements of
some auxiliary smoothness estimates for the compound binomial and compound Poisson
distributions (see Section 3). Sometimes the estimates are supplied with explicit constants;
in other cases, weaker assumptions on the parameters are used. In Section 4, we give the
proofs of the main results. We note that our aim is to get our constants as precise as
possible, as a consequence of which some proofs are quite long and elaborate.

1.2 Notation

Let F (resp. S, resp. M) denote the set of all probability distributions (resp. symmetric
probability distributions about zero, resp. finite signed measures) on R. All products and
powers of finite signed measures in M are defined in the convolution sense; for W ∈ M,
set W 0 = I = I0, where Iu is the Dirac measure at point u ∈ R. The exponential of W is
defined by the finite signed measure

exp{W} =
∞∑

m=0

Wm

m!
.

The compound Poisson distribution with parameters t ∈ [0,∞) and F ∈ F is given by
exp{t(F − I)}. Let W = W+ − W− denote the Hahn–Jordan decomposition of W . The
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total variation norm ‖W‖, the Kolmogorov norm |W |, and the Lévy concentration norm
|W |h of W ∈M are defined by

‖W‖ = W+(R) + W−(R),
|W | = sup

x∈R
|W ((−∞, x])|,

|W |h = sup
x∈R

|W ([x, x + h])|, (h ∈ [0,∞)),

respectively. It should be mentioned that | · |0 is only a seminorm on M, i.e. it may happen
that, for non-zero W ∈M, |W |0 = 0. But if we restrict ourselves to finite signed measures
concentrated on the set of all integers Z, then | · |0 is indeed a norm, the so-called local norm.
For h ∈ (0,∞) and a finite measure G on R, set |G|h− = limy↑h |G|y. It is well-known that

|G|h− = sup
x∈R

G((x, x + h]) = sup
x∈R

G([x, x + h)) = sup
x∈R

G((x, x + h)),

see Hengartner and Theodorescu [18]. Note that, here, it is essential to assume that G is a
non-negative measure. Set |G|0− = 0. For W ∈M and a power series g(z) =

∑∞
m=0 am zm,

(am ∈ R), converging absolutely for each complex z ∈ C with |z| ≤ ‖W‖, we define
g(W ) =

∑∞
m=0 am Wm ∈M. In the paper, we will often use the well-known relations

‖V W‖ ≤ ‖V ‖ ‖W‖, |V W | ≤ |V | ‖W‖, |V W |h ≤ |V |h ‖W‖,
max{|W |, |W |h} ≤ ‖W‖,

for V,W ∈M, h ∈ [0, ∞), and

max{|W |, |W |h} ≤
1
2
‖W‖, (3)

for W ∈ M with W (R) = 0 and h ∈ [0,∞). We denote by C positive absolute constants,
the values of which may change from line to line, or even within the same line. Similarly,
by C(·) we denote constants depending on the indicated argument only. For x ∈ R, let
bxc be the largest integer not exceeding x. Always, let 00 = 1, 1/0 = ∞, and, for k ∈ Z,∑k−1

m=k = 0 be the empty sum. For two real valued functions f and g defined on some subset
of R, f(x) ∼ g(x), (x → a ∈ R ∪ {±∞}) means that limx→a f(x)/g(x) = 1. Set

ϕ0(x) =
1√
2π

e−x2/2, ϕk(x) =
dk

dxk
ϕ0(x), (k ∈ N, x ∈ R), (4)

‖ϕk‖1 =
∫

R
|ϕk(x)|dx, ‖ϕk‖∞ = sup

x∈R
|ϕk(x)|, (k ∈ Z+ = N ∪ {0}).

Let n ∈ N and

pj = 1− qj ∈ [0, 1], (j ∈ {1, . . . , n}), p = (p1, . . . , pn), λk =
n∑

j=1

pk
j , (k ∈ N),

λ = λ1 > 0, p =
λ

n
, q = 1− p, pmax = max

1≤j≤n
pj , pmin = min

1≤j≤n
pj ,

δ = pmax − pmin, θ =
λ2

λ
, γk =

n∑
j=1

(p− pj)k, νk =
n∑

j=1

|p− pj |k, (k ∈ N).
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The generalized Poisson binomial and compound binomial distributions are denoted by

GPB(n, p, F ) =
n∏

j=1

(qjI + pjF ), Bi(n, p, F ) = (qI + pF )n,

where F ∈ F and p = 1 − q ∈ [0, 1]. The binomial distribution with parameters n ∈ N
and p ∈ [0, 1] is then given by Bi(n, p) = Bi(n, p, I1). Let s ∈ N and, for F ∈ F and
j ∈ {1, . . . , n}, set

Uj = Uj(n, p, F ) = (pj − p)(F − I)
∞∑

k=0

(−p)k(F − I)k,

D = D(n, p, F ; s) = exp
{ n∑

j=1

s∑
m=2

(−1)m+1

m
Um

j

}
,

EBi(n, p, F ; s) = D(n, p, F ; s)(qI + pF )n.

Whenever we deal with Uj or D, we assume that p < 1/2, and, therefore, Uj and D are
elements of M with finite total variation norms

‖Uj‖ ≤
2|pj − p|
1− 2p

≤ 2δ

1− 2p
, ‖D‖ ≤ exp

{ n∑
j=1

s∑
m=2

1
m
‖Uj‖m

}
. (5)

Note that, if δ + p < 1/2, then D(n, p, F ; ∞) ∈M can be defined as above and we get, by
using characteristic functions,

GPB(n, p, F ) = D(n, p, F ; ∞)(qI + pF )n. (6)

This equality motivates the approximation of GPB(n, p, F ) by EBi(n, p, F ; s). Observe
that EBi(n, p, F ; s) can be viewed as a function of (n, p, s, γ1, . . . , γs, F ) and is, in this
regard, of a simpler form than GPB(n, p, F ), at least when s is small. In Section 2 below,
it turns out that, as we should expect, the accuracy of our error bounds is increasing in s.

1.3 Some known results

The compound Poisson approximation of the distribution of the sum of independent ran-
dom variables was considered in numerous publications; for example, see Le Cam [24, 25],
Arak and Zăıtsev [1], Čekanavičius [9], Barbour and Chryssaphinou [2], Roos [32], and the
references therein. One of the most general results, involving approximations derived from
an asymptotic expansion in the exponent, was obtained by Hipp (see formula (6) in [19]),
who proved that, for pj ∈ [0, 1/2), Fj ∈ F , (j ∈ {1, . . . , n}), and s ∈ N,∥∥∥ n∏

j=1

(qjI+pjFj)−exp
{ n∑

j=1

s∑
m=1

(−1)m+1

m
pm

j (Fj−I)m
}∥∥∥ ≤ exp

{ 2s+1

s + 1

n∑
j=1

ps+1
j

1− 2pj

}
−1. (7)

Binomial and compound binomial approximations were studied not so comprehensively.
Ehm ([15], Theorem 1 and Lemma 2) proved that the total variation distance between
GPB(n, p, I1) and the binomial distribution Bi(n, p) can be estimated in the following
way:

γ2

62
min

{
1,

1
np q

}
≤ ‖GPB(n, p, I1)− Bi(n, p)‖ ≤ 2γ2 min

{
1,

1
np q

}
. (8)
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As can be seen from (8), the estimate depends on the behavior of the so-called magic factor
(np q)−1 (cf. Introduction in Barbour et al. [3]), and on the closeness of all pj . The last fact
is reflected by γ2. In Roos [29], an approximation Bi(n, p, I1; s) with a general p ∈ [0, 1]
based on an expansion in Krawtchouk polynomials was constructed. We note that, in
[29], this signed measure was denoted by Bs(n, p). By inserting a general F ∈ F into the
generating function of Bi(n, p, I1; s), we obtain the signed measure Bi(n, p, F ; s). In view
of the properties of the total variation distance, the case of arbitrary F ∈ F can be reduced
to the case F = I1 and, therefore, one of the main results from Roos (see Theorem 2 in [29]
or Corollary 1 in [31]) can be written as:

sup
F∈F

‖GPB(n, p, F )− Bi(n, p, F ; s)‖ = ‖GPB(n, p, I1)− Bi(n, p, I1; s)‖

≤ C(s)
(
γ2 min

{
1,

1
np q

})(s+1)/2
. (9)

Note that the case s = 1 corresponds to Ehm’s approximation. The compound binomial
approximation of the generalized Poisson binomial distribution was further investigated in
Čekanavičius and Roos [12]. It was shown that the possible shifting or symmetry of F
provide better results. In particular, from Theorem 3.1 together with Remark 1(ii) of that
paper it follows that, if pmax ≤ 0.3, then

sup
F∈F

inf
u∈R

|GPB(n, p, IuF )− Bi(n, p, IuF ; s)| ≤ C(s)
γ

(s+1)/2
2

λ(s+1)/2+(s+1)/(2s+4)
, (10)

sup
F∈S

|GPB(n, p, F )− Bi(n, p, F ; s)| ≤ C(s)
γ

(s+1)/2
2

λs+1
. (11)

In the present paper, we prove that the approximation by the signed measures
EBi(n, p, F ; s) derived from the expansion in the exponent, is more accurate than (9)–(11).
First of all, the bounds much better reflect the closeness of pj . For example, it is shown
with (14) below, that, in the general case F ∈ F , under the assumption that pmax ≤ 1/5,
the accuracy can be estimated by C(s) νs+1λ

−(s+1)/2. If λ is large and if s ≥ 2, then this
bound is small, since generally

γ2

λ q
≤ δ min

{
1,

δ

4p q

}
(12)

(see Remark on p. 259 in [29]) and therefore νs+1 ≤ δs−1 γ2 ≤ δs λq. In this sense, (14)
provides a much better bound than the one of (9). In the cases of a shifted or symmetric
distribution F , the improvement in the accuracy is similar.

Note that the accuracy of approximation in (8) and (9) is estimated by a minimum
of two quantities, one of which containing a magic factor. As a rule, the estimate with
the magic factor is much more difficult to prove than the other one. Sometimes, for this
case, more restrictive assumptions are used. Indeed, in (13) below, we prove an analogue of
Hipp’s result (see (7)) for the compound binomial approximation, which does not exhibit a
magic factor, but requires only the assumption that δ + p < 1/2. In contrast to this, most
of the other main results are proved under the stronger condition pmax ≤ 1/5. Moreover,
due to (3), the total variation bound in (13) can also be used for the concentration and
Kolmogorov norms. Therefore, it is clear that each estimate in Theorems 2.2 and 2.3 below,
which contains some magic factor, can be rewritten, in the spirit of (8), as the minimum of
the bound in (13) and the corresponding estimate.
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It should be mentioned that it is possible to choose the parameters of the underlying
compound binomial distribution in a way different from the one of this paper. In fact,
a compound binomial distribution Bi(N, p̃, F ) can be used, where the two parameters
N ∈ N and p̃ ∈ [0, 1] are chosen in such a way that, in the case F = I1, both distributions
Bi(N, p̃, F ) and GPB(n, p, F ) have the same mean and approximately the same variance.
This two-parametric binomial approach was used in Barbour et al. ([3], p. 190) and Soon [34]
for the binomial approximation of the Poisson binomial distribution. In Čekanavičius and
Roos [11], it was extended to the compound binomial case. Generally speaking, in com-
parison with the approach of the present paper, this two-parameter choice implies better
magic factors. However, certain difficulties arise in the construction of asymptotic expan-
sions, since N must be integer valued. Moreover, in comparison to the results below, the
bounds of the two-parametric compound binomial approximation much weaker reflect the
possible closeness of the pj . We note that the main results of this paper can be applied to
the two-parametric compound binomial approximation, see Theorem 2.6 below.

2 Main results

Our first result is a Hipp-type bound without any magic factor (cf. (7)).

Theorem 2.1 Let δ + p < 1/2 and F ∈ F . Then

‖GPB(n, p, F )− EBi(n, p, F ; s)‖ ≤ exp
{ 2s+1

(s + 1)(1− 2p)s

n∑
j=1

|pj − p|s+1

1− 2(|pj − p|+ p)

}
− 1.

(13)

It turns out that the bound in the previous theorem is of order νs+1. More precisely we
have the following corollary.

Corollary 2.1 Let δ + p ≤ C < 1/2, νs+1 ≤ C, and F ∈ F . Then

‖GPB(n, p, F )− EBi(n, p, F ; s)‖ ≤ C(s) νs+1.

In the next theorem, we present some bounds with magic factors. As already discussed in
the introduction, in contrast to the general case F ∈ F , the shifting of F or the assumption
F ∈ S improves the order. In fact, the exponent of 1/λ can be increased.

Theorem 2.2 Let us assume that pmax ≤ 1/5. For F ∈ F , we then have∥∥∥GPB(n, p, F )− EBi(n, p, F ; s)
∥∥∥ ≤ C(s)

νs+1

λ(s+1)/2
, (14)

inf
u∈R

∣∣∣GPB(n, p, IuF )− EBi(n, p, IuF ; s)
∣∣∣ ≤ C(s)

νs+1

λ(s+1)/2+(s+1)/(2s+4)
. (15)

For F ∈ S and h ∈ [0,∞), we have∣∣∣GPB(n, p, F )− EBi(n, p, F ; s)
∣∣∣ ≤ C(s)

νs+1

λs+1
, (16)∣∣∣GPB(n, p, F )− EBi(n, p, F ; s)

∣∣∣
h

≤ C(s)
νs+1

λs+1
Q

1/(2s+5)
h

× (| lnQh|+ 1)6(s+2)(s+3)/(2s+5), (17)

where Qh := Qh,λq,F := | exp{40−1λq(F − I)}|h.
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Remark 2.1 (a) If pj = p for all j, then GPB(n, p, F ) and EBi(n, p, F ; s) coincide
and this is reflected in the bounds (13)–(17).

(b) In the definition of EBi(n, p, F ; s), we have to assume that p < 1/2. Therefore, in
our results, the assumption on pmax cannot be entirely dropped.

(c) It is easily shown that (16) follows from (17). However, (17) leads to an estimate of
a better order than the one in (16), if we use a Le Cam-type bound for the concen-
tration function of compound Poisson distributions; for example, see Proposition 3
in Roos [32], where it was shown that, for t ∈ (0,∞), h ∈ [0,∞), and an arbitrary
distribution F ∈ F ,

| exp{t(F − I)}|h ≤
1√

2e t max{F ((−∞,−h)), F ((h,∞))}
. (18)

Generally, for the total variation distance, there seems to be no hope for upper bounds
similar to (15) and (16). However, for symmetric distributions concentrated on the set of
integers, the following theorem can be shown.

Theorem 2.3 Let pmax ≤ 1/5, h ∈ [0,∞), and F ∈ S be concentrated on the set Z \ {0}.
Then

‖GPB(n, p, F )− EBi(n, p, F ; s)‖ ≤ C(s)
√

σ
νs+1

λs+1
, (19)

|GPB(n, p, F )− EBi(n, p, F ; s)|h ≤ C(s) bh + 1c νs+1

λs+3/2
, (20)

where, for (19), we assume that F has finite variance σ2.

Remark 2.2 (a) The total variation bound (19) is slightly worse than the one in (16),
since the variance σ2 of the F ∈ S concentrated on Z \ {0} cannot be smaller than
one.

(b) Inequality (20) has a better order than the bound, which can be derived from (17)
and (18).

In the previous results, the leading constants C(s) are usually not given explicitly, since,
due to the method of proof, they appear to be quite large. However, in the special case
when F is a Dirac measure or symmetric distribution concentrated on two points, some
asymptotically sharp constants can be evaluated.

Theorem 2.4 Let pmax ≤ 1/5 and set

c
(1)
s+1 =

‖ϕs+1‖1

s + 1
, c

(2)
s+1 =

‖ϕs‖∞
s + 1

, c
(3)
s+1 =

‖ϕs+1‖∞
s + 1

.

Then∣∣∣‖GPB(n, p, I1)− EBi(n, p, I1; s)‖ −
c
(1)
s+1 |γs+1|

(λ q)(s+1)/2

∣∣∣ ≤ C(s) νs+1

λ(s+1)/2

( 1√
λ

+
γ2

λ

)
, (21)

∣∣∣|GPB(n, p, I1)− EBi(n, p, I1; s)| −
c
(2)
s+1 |γs+1|

(λ q)(s+1)/2

∣∣∣ ≤ C(s) νs+1

λ(s+1)/2

( 1√
λ

+
γ2

λ

)
, (22)

∣∣∣|GPB(n, p, I1)− EBi(n, p, I1; s)|0 −
c
(3)
s+1 |γs+1|

(λ q)(s+2)/2

∣∣∣ ≤ C(s) νs+1

λ(s+2)/2

( 1√
λ

+
γ2

λ

)
. (23)
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Theorem 2.5 Let pmax ≤ 1/5 and F = 2−1(I−1 + I1). Set

c
(4)
s+1 =

‖ϕ2s+2‖1

(s + 1) 2s+1
, c

(5)
s+1 =

‖ϕ2s+1‖∞
(s + 1) 2s+1

, c
(6)
s+1 =

‖ϕ2s+2‖∞
(s + 1) 2s+1

.

Then ∣∣∣‖GPB(n, p, F )− EBi(n, p, F ; s)‖ −
c
(4)
s+1 |γs+1|

λs+1

∣∣∣ ≤ C(s)
νs+1

λs+3/2
, (24)∣∣∣|GPB(n, p, F )− EBi(n, p, F ; s)| −

c
(5)
s+1 |γs+1|

λs+1

∣∣∣ ≤ C(s)
νs+1

λs+3/2
, (25)∣∣∣|GPB(n, p, F )− EBi(n, p, F ; s)|0 −

c
(6)
s+1 |γs+1|
λs+3/2

∣∣∣ ≤ C(s)
νs+1

λs+2
. (26)

Remark 2.3 The constants c
(1)
s+1, . . . , c

(6)
s+1 in Theorems 2.4 and 2.5 can be evaluated for

small s ∈ N by using the following identities, which are not difficult to prove:

‖ϕ1‖1 =

√
2
π

, ‖ϕ1‖∞ =
1√
2πe

, ‖ϕ2‖1 =
4√
2πe

, ‖ϕ2‖∞ =
1√
2π

,

‖ϕ3‖1 =

√
2
π

(1 + 4e−3/2), ‖ϕ3‖∞ =

√
3
π

exp
{√

3
2
− 3

2

}√
3−

√
6,

‖ϕ4‖1 = 4e−3/2

√
3
π

[
exp

{√
3
2

}√
3−

√
6 + exp

{
−

√
3
2

}√
3 +

√
6
]
,

‖ϕ4‖∞ =
3√
2π

, ‖ϕ5‖1 =
2(3e5/2 − 32 sinh(

√
5/2) + 16

√
10 cosh(

√
5/2))√

2π e5/2
.

Remark 2.4 (a) Assume that

pmax ≤
1
5
, νs+1 ≤ C |γs+1|, λ →∞, (27)

and that γ2/λ → 0. Then (21) yields

‖GPB(n, p, I1)− EBi(n, p, I1; s)‖ ∼
c
(1)
s+1|γs+1|

(λ q)(s+1)/2
.

Similar assertions follow from (22) and (23). Note that the conditions above are not
very restrictive. For example, they are valid, if 0 < C ≤ pmin ≤ pmax ≤ 1/5, s is odd,
n →∞, δ → 0, (see (12)).

(b) Assume now that F = 2−1(I−1 + I1) and that the conditions of (27) hold. Then (24)
implies that

‖GPB(n, p, F )− EBi(n, p, F ; s)‖ ∼
c
(4)
s+1 |γs+1|

λs+1
.

In contrast to the assumptions made in Remark 2.4(a), here, we do not need to suppose
that γ2/λ → 0. Similar assertions follow from (25) and (26).

(c) The norms in (21)–(26) do not change, if we assume that F = Iu or F = 2−1(I−u +Iu)
for some u ∈ (0,∞), respectively. Therefore, under these assumptions, Theorems 2.4
and 2.5 remain valid.
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In principle, our results above can be used to get upper bounds in the two-parametric
compound binomial approximation. We illustrate this for the Kolmogorov norm in the
context of symmetric distributions F ∈ S. As explained at the end of Section 1.3, we
choose the binomial parameters in such a way that Bi(N, p̃, I1) and GPB(n, p, I1) have
the same mean and nearly the same variance.

Theorem 2.6 Let N = λ/θ − δ̃, N ∈ N, |δ̃| ≤ 1/2, and

p̃ = p̃1 = · · · = p̃N =
λ

N
, p̃N+1 = · · · = p̃n = 0, ν̃k =

n∑
j=1

|p− p̃j |k, (k ∈ N).

If pmax ≤ 1/5 and p̃ ≤ 1/5, then

sup
F∈S

∣∣∣GPB(n, p, F )− Bi(N, p̃, F )
∣∣∣ ≤ C

λ2

(
|ν2 − ν̃2|+

ν3 + ν̃3

λ

)
. (28)

Remark 2.5 Let the notation of Theorem 2.6 be valid. Note that N ≤ n is such that the
p̃j are correctly defined. In Theorem 2.1 of [11], it was shown that, if pmax ≤ 1/4 and λ ≥ 1
then

sup
F∈S

∣∣∣GPB(n, p, F )−Bi(N, p̃, F )
∣∣∣ ≤ C

λ2

( θ2|δ̃|
1− δ̃θ/λ

+
(λ3

λ
− θ2

)
+

1
λ2

n∑
j=1

pj |pj − θ|
)
. (29)

For a comparison of (28) with (29), we first note that, as is easily seen, ν2− ν̃2 = −θ2δ̃/(1−
δ̃θ/λ). Further, clearly we have ν3 ≤ δν2, whereas ν̃3 ∈ [2(

√
2 − 1) p ν̃2, p̃ ν̃2]. The latter

relation follows from the fact that, due to N ≤ n, we have p̃ ≥ p, and hence

2(
√

2− 1) p ν̃2 ≤
Np̃2 − np2

p̃
[(p̃−

√
2p)2 + 2(

√
2− 1) p̃p] = N(p̃− p)[(p̃− p)2 + p2]

= ν̃3 = N(p̃− p)3 + (n−N)p3 ≤ N(p̃− p)2p̃ + (n−N)p2p̃ = p̃(Np̃2 − np2) = p̃ ν̃2.

On the other hand, we have

λ3

λ
− θ2 ∈

[p2
min ν2

pλ
,

pmax ν2

λ

]
.

Indeed, since ν2 = (2n)−1
∑n

i=1

∑n
j=1(pi − pj)2, we have

p2
min ν2

p
≤ 1

2np

n∑
i=1

n∑
j=1

(pi − pj)2 pipj = λ3 −
λ2

2

λ
=

n∑
j=1

pj(pj − p)2 − ν2
2

λ
≤ pmax ν2.

Combining the estimates above, we see that, under the assumption that pmax ≤ 1/5, p̃ ≤
1/5, λ ≥ 1, δ̃ = 0 and that 0 < C < pmin, the bound in (28) can be estimated by Cν2/λ3,
whereas the one in (29) is not better than C(ν2/λ3 + λ−2

∑n
j=1 pj |pj − θ|).

The ideas used in the proofs below imply bounds in the compound Poisson approximation.
In the following theorem, we present four examples with explicit constants.
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Theorem 2.7 Let us assume that θ = λ2/λ < 1. If F ∈ F , then

‖GPB(n, p, F )− exp{λ(F − I)}‖ ≤ 3 θ

2e (1−
√

θ)3/2
, (30)

inf
u∈R

|GPB(n, p, IuF )− exp{λ(IuF − I)}| ≤ 11.2 θ

λ1/3 (1−
√

θ)11/6
. (31)

If F ∈ S is concentrated on Z \ {0} and h ∈ [0,∞), then

‖GPB(n, p, F )− exp{λ(F − I)}‖ ≤ 1.16
√

σ + 1 θ

λ(1−
√

θ)5/2
, (32)

|GPB(n, p, F )− exp{λ(F − I)}|h ≤ 0.82 bh + 1c θ

λ3/2(1−
√

θ)3
, (33)

where, for (32), we assume that F has finite variance σ2.

Remark 2.6 (a) Inequality (30) is an improvement of formula (10) in Roos [30]. Further,
in contrast to (1.9) in Čekanavičius [10], the bound (31) requires more restrictive
assumptions but is, however, of a better order and contains an explicit constant.
Inequalities (32) and (33) seem to be completely new.

(b) In (30), the constant 3/(2e) cannot be replaced by a smaller one. Indeed, a stronger
result has been shown in Theorem 1 in [30]: we have

lim
r↓0

(
sup

1
θ
‖GPB(n, p, F )− exp{λ(F − I)}‖

)
=

3
2e

,

where the sup is over all n ∈ N, p1, . . . , pn ∈ [0, 1], F ∈ F , such that θ = λ2/λ ≤ r.

3 Auxiliary smoothness estimates

3.1 Some known estimates

The following lemma collects some basic norm estimates.

Lemma 3.1 Let F ∈ F , j, n ∈ Z+, p = 1− q ∈ (0, 1), and t ∈ (0,∞). Then

‖(F − I)2 exp{t(F − I)}‖ ≤ 3
te

, (34)

‖(F − I)j(I + p(F − I))n‖ ≤
(

n + j

j

)−1/2

(pq)−j/2, (35)

If j ∈ N, then

|(I1 − I)j(I + p(I1 − I))n|0 ≤
√

e
2

(
1 +

√
π

2j

)( n

n + j + 1

)(n+j+1)/2( j

npq

)(j+1)/2
. (36)

If n ∈ N and j ∈ {1, . . . , n}, then

nn

jj(n− j)n−j
≤ e

√
j

(
n

j

)
. (37)

Inequality (34) was proved in Roos ([30], formula (29)). For the proof of (35)–(37), see
Lemma 4, formula (35), and Lemma 3 in Roos [29], respectively. Note that (37) can be
used to estimate the right-hand side of (35).
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3.2 General symmetric distributions

The goal of this section is Proposition 3.1 below, for the proof of which we need the following
two lemmas. The next lemma is also used in other proofs. Note that the first bound in (38)
is required in the proof of Theorem 2.7, while the second one is used in Propositions 3.1
and 3.4.

Lemma 3.2 Let F ∈ F , r ∈ [0, 1), and, for z ∈ C,

g(z) =
1

(z − 1)2
[ n∏

j=1

(1 + pj(z − 1))− exp{λ(z − 1)}
]
exp{−rλ(z − 1)}.

If θ = λ2/λ ≤ 1− r, then

‖g(F )‖ ≤ min
{ λ2

2
√

1− θ/(1− r)
, 1.69 λ2

}
. (38)

Proof. Let the so-called Charlier coefficients am ∈ R, (m ∈ Z+), be defined by

e−λz
n∏

j=1

(1 + pjz) = 1 +
∞∑

m=2

amzm, (z ∈ C, a0 = 1, a1 = 0).

Using Shorgin’s ([33], Theorem 1) recursive formula

am =
1
m

m−2∑
k=0

(−1)m+k+1akλm−k, (m ∈ {2, 3, . . . }),

we derive

a2 = −λ2

2
, a3 =

λ3

3
, a4 =

λ2
2

8
− λ4

4
, a5 =

λ5

5
− λ2λ3

6
,

and hence

|a3| ≤
λ

3/2
2

3
, |a4| ≤

n∑
j=1

p2
j

∣∣∣p2
j

4
− λ2

8

∣∣∣ ≤ λ2
2

8
, |a5| ≤

n∑
j=1

p2
j

∣∣∣p3
j

5
− λ3

6

∣∣∣ ≤ λ2λ3

6
≤ λ

5/2
2

6
.

As has been shown by Shorgin ([33], Lemma 5), |am| ≤ (λ2 e/m)m/2 for m ∈ {2, 3, . . . }. For
z ∈ C, t ∈ R, and m ∈ Z+, let

Ch(m; z, t) =
m∑

k=0

(
m

k

)(
z

k

)
k! (−t)m−k

be the Charlier polynomial of degree m with parameter t. It is well-known that, for F ∈ F ,
t ∈ R, and m ∈ Z+,

tm(F − I)m exp{t(F − I)} =
∞∑

k=0

e−t t
k

k!
Ch(m; k, t)F k
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and that the Charlier polynomials are orthogonal with respect to the Poisson counting
density, i.e., for t ∈ [0,∞) and j, m ∈ Z+,

∞∑
k=0

e−t t
k

k!
Ch(j; k, t) Ch(m; k, t) =

{
tj j!, if j = m,
0, otherwise,

see Chihara ([13], p. 3–4). Set t = (1− r)λ. Hence, for arbitrary ` ∈ {2, 3, . . . }, we obtain

‖g(F )‖ =
∥∥∥ ∞∑

m=2

am(F − I)m−2 exp{t(F − I)}
∥∥∥

≤
∥∥∥ ∑̀

m=2

am(F − I)m−2 exp{t(F − I)}
∥∥∥ +

∥∥∥ ∞∑
m=`+1

am(F − I)m−2 exp{t(F − I)}
∥∥∥

= T1 + T2, say.

On the one hand, using Cauchy’s inequality,

T1 =
∥∥∥ ∑̀

m=2

am

tm−2

∞∑
k=0

e−t t
k

k!
Ch(m− 2; k, t)F k

∥∥∥ ≤ ∞∑
k=0

e−t t
k

k!

∣∣∣ ∑̀
m=2

am

tm−2
Ch(m− 2; k, t)

∣∣∣
≤

( ∞∑
k=0

e−t t
k

k!

[ ∑̀
m=2

am

tm−2
Ch(m− 2; k, t)

]2)1/2

=
( ∑̀

m(1)=2

∑̀
m(2)=2

am(1) am(2)

tm(1)+m(2)−4

∞∑
k=0

e−t t
k

k!
Ch(m(1)− 2; k, t) Ch(m(2)− 2; k, t)

)1/2

=
( ∑̀

m=2

a2
m

t2m−4
tm−2(m− 2)!

)1/2
≤

( ∞∑
m=2

a2
m

(m− 2)!
tm−2

)1/2
.

On the other hand, we have

T2 ≤
∞∑

m=`+1

|am|2m−2 ≤
∞∑

m=`+1

(λ2 e
m

)m/2
2m−2 (`→∞)−→ 0.

Hence

‖g(F )‖ ≤
( ∞∑

m=2

a2
m

(m− 2)!
tm−2

)1/2
≤

(λ2
2

4
+

λ3
2

9 t
+

λ4
2

32 t2
+

λ5
2

6 t3
+

∞∑
m=6

(λ2 e
m

)m (m− 2)!
tm−2

)1/2

=
λ2

2

(
1 +

4x

9
+

x2

8
+

2x3

3
+

∞∑
m=6

xm−2 4 em m!
mm+1(m− 1)

)1/2
, (39)

where x = λ2/t = θ/(1 − r). If, in (39), we let x = 1, we arrive at the second inequality
in (38). Moreover, (39) together with Stirling’s formula

m! =
√

2π mm+1/2 exp{−m + ϑm}, ϑm ∈
[ 1
12m + 1

,
1

12m

]
, m ∈ N, (40)

(see Feller [17], p. 54) leads also to

‖g(F )‖ ≤ λ2

2

(
1 + x + x2 + x3 +

∞∑
m=6

xm−2 4
√

2π e1/(12m)

m1/2(m− 1)

)1/2
≤ λ2

2
√

1− x
,

which yields the first inequality in (38). �
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Lemma 3.3 Let F ∈ S, j ∈ Z+, t ∈ (0,∞), and h ∈ [0,∞). Then

|(F − I)j exp{t(F − I)}| ≤ C(j)
tj

, (41)

|(F − I)j exp{t(F − I)}|h ≤ C(j)
tj

Q̃
1/(2j+1)
h (| ln Q̃h|+ 1)6j(j+1)/(2j+1), (42)

where Q̃h := Q̃h,t,F := | exp{4−1t(F − I)}|h.

For the proof, see Theorem 1.1 in Čekanavičius [7]. Further comments can be found in
Čekanavičius and Roos ([12], Lemma 4.4).

Proposition 3.1 Let F ∈ S, j ∈ Z+, n ∈ N, p = 1− q ∈ (0, 1), and h ∈ [0,∞). Then

|(F − I)j(I + p(F − I))n| ≤ C(j)
q (npq)j

, (43)

|(F − I)j(I + p(F − I))n|h ≤ C(j)
q (npq)j

Q̃
1/(2j+3)
h (| ln Q̃h|+ 1)6(j+1)(j+2)/(2j+3), (44)

where Q̃h := Q̃h,npq,F := | exp{4−1 npq (F − I)}|h.

Proof. We use the second bound in (38) under the assumption that p1 = · · · = pn = p and
r = q. Taking into account (41), we obtain

|(F − I)j(I + p(F − I))n| ≤ 2|(F − I)j+1 exp{npq(F − I)}| ‖g(F )‖
+ |(F − I)j exp{np(F − I)}|

≤ C(j) np2

(npq)j+1
+

C(j)
(np)j

≤ C(j)
q (npq)j

,

which implies (43). Inequality (44) can be shown in the same way with the help of (42). �

3.3 Symmetric distributions on the integers

In Čekanavičius and Roos ([12], Lemma 4.6), the following lemma was shown.

Lemma 3.4 Let j ∈ Z+ and t ∈ (0,∞). If F ∈ S is concentrated on the set Z \ {0}, then

‖(F − I)j exp{t(F − I)}‖ ≤ 3.6 j1/4
√

1 + σ
( j

te

)j
, (j 6= 0), (45)

|(F − I)j exp{t(F − I)}|0 ≤ 2
(j + 1/2

te

)j+1/2
, (46)

where, for (45), we assume that F has finite variance σ2.

In Proposition 3.2 below, we show similar bounds in the context of the compound binomial
distribution, for the proof of which the following four lemmas are used. Some further
notation is necessary. The Fourier transform of a finite signed measure W ∈M is denoted
by Ŵ (x) =

∫
R eixy dW (y), (x ∈ R). Here, i denotes the complex unit. It is easy to check

that, for V,W ∈M and a, x ∈ R,

̂exp{W}(x) = exp{Ŵ (x)}, V̂ W (x) = V̂ (x)Ŵ (x), Îa(x) = eixa, Î(x) = 1.
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Lemma 3.5 Let W ∈ M be concentrated on Z satisfying
∑

k∈Z |k| |W ({k})| < ∞. Then,
for all a ∈ R and b ∈ (0,∞),

‖W‖2 ≤ 1 + bπ

2π

∫ π

−π

(
|Ŵ (x)|2 +

1
b2

∣∣∣ d
dx

(
e−ixaŴ (x)

)∣∣∣2) dx. (47)

Further,

|W |0 ≤
1
2π

∫ π

−π
|Ŵ (x)|dx. (48)

For a proof of (47), see Presman ([27], Lemma on p. 419). Inequality (48) follows from the
Fourier inversion formula; see also Čekanavičius and Roos ([12], Lemma 4.5). The following
lemma is a version of the Kolmogorov–Rogozin inequality for concentration functions.

Lemma 3.6 Let n ∈ N, F1, . . . , Fn ∈ F and h ∈ [0,∞). For j ∈ {1, . . . , n}, let F−1
j

denote the quantile function of Fj, that is, for y ∈ (0, 1), we have F−1
j (y) = inf{x ∈ R :

Fj((−∞, x]) ≥ y}. Let Y be a random variable, uniformly distributed on (0, 1/2), and set
κ = n−1

∑n
j=1 P(F−1

j (1− Y )− F−1
j (Y ) ≤ h). Then κ ≤ n−1

∑n
j=1 |Fj |h and

∣∣∣ n∏
j=1

Fj

∣∣∣
h
≤

( 1− κn+1

(n + 1)(1− κ)

)1/2
. (49)

Proof. The assertion is a simple consequence of arguments by Kolmogorov [21], Ro-
gozin ([28], Theorem 1, p. 95), and Le Cam ([25], Theorem 2, p. 411); cf. also Roos ([32],
Proposition 5). Indeed, it can be shown that∣∣∣ n∏

j=1

Fj

∣∣∣
h
≤ E

1√
Z + 1

,

where Z =
∑n

j=1 Zj is the sum of independent Bernoulli random variables Z1, . . . , Zn with
success probabilities pj := P(Zj = 1) = P(F−1

j (1 − Y ) − F−1
j (Y ) > h), (j ∈ {1, . . . , n});

(see [25], p. 411). In order to estimate this mean, we proceed as Le Cam: using the integral
representation of the Gamma function, we get, for m ∈ Z+,

1√
m + 1

=
1

Γ(1/2)

∫ ∞

0

e−x(m+1)

√
x

dx.

Hence, by Fubini’s theorem,

E
1√

Z + 1
=

1
Γ(1/2)

∫ ∞

0

e−x

√
x

E(e−xZ) dx =
1

Γ(1/2)

∫ ∞

0

e−x

√
x

n∏
j=1

(1 + pj(e−x − 1)) dx.

Le Cam has now used the inequality 1 + x ≤ ex, (x ∈ R). If we proceed with the better
inequality between the arithmetic and geometric means, we obtain, together with the Jensen
inequality,

E
1√

Z + 1
≤ E

1√
M + 1

≤
(
E

1
M + 1

)1/2
=

(1− (1− p)n+1

(n + 1)p

)1/2
,

where M is a binomial distributed random variable with parameters n and p = n−1
∑n

j=1 pj .
The assertion is shown. �
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Lemma 3.7 Let b ∈ (0,∞), p = 1 − q ∈ (0, 1), and let F ∈ S be concentrated on the set
Z \ {0}. Then

1
2π

∫ π

−π
|1− p(1− F̂ (x))|b dx ≤

√
2
bp

. (50)

Proof. Due to the Parseval equality, for each G ∈ F concentrated on Z, we have

1
2π

∫ π

−π
|Ĝ(x)|2 dx =

∞∑
k=−∞

(
G({k})

)2 ≤ |G|0.

Therefore, Lemma 3.6 can be applied to G = I + p(F − I) with κ = q, giving

1
2π

∫ π

−π
|1− p(1− F̂ (x))|b dx ≤ 1

2π

∫ π

−π
|(1− p(1− F̂ (x)))bb/2c|2 dx

≤ |Gbb/2c|0 ≤
1√

(bb/2c+ 1)p
≤

√
2
bp

.

The lemma is proved. �

Lemma 3.8 For a, b ∈ (0,∞) and p = 1− q ∈ (0, 1), we have

sup
y∈[0,2]

ya|1− py|b ≤
( b

a + b

)a+b( a

bpq

)a
≤

( a

ebpq

)a
. (51)

Proof. For y ∈ [0,∞), let f(y) = ya|1− py|b. It is easily seen that

sup
y∈[0,2]

f(y) ≤ max
{

f(2), f
( a

(a + b)p

)}
= max

{
2a|1− 2p|b, aa bb

(a + b)a+bpa

}
.

Using the simple fact that

sup
p∈[0,1]

|1− 2p|b(pq)a ≤ aa bb/2

2a(2a + b)a+b/2
,

we obtain

sup
y∈[0,2]

f(y) ≤ aa

(pq)a
max

{ bb/2

(2a + b)a+b/2
,

bb

(a + b)a+b

}
=

aa bb

(a + b)a+b(pq)a
.

The proof is easily completed. �

Proposition 3.2 Let j ∈ Z+, n ∈ N, and p = 1 − q ∈ (0, 1). If F ∈ S is concentrated on
the set Z \ {0}, then

‖(F − I)j(I + p(F − I))n‖ ≤ 6.73
√

σ
j

q1/4

( j

e npq

)j
, (j 6= 0), (52)

|(F − I)j(I + p(F − I))n|0 ≤ 2
√

eq
(j + 1/2

e npq

)j+1/2
, (53)

where, for (52), we assume that F has finite variance σ2. If F = 2−1(I−1 + I1), then

‖(F − I)j(I + p(F − I))n‖ ≤ j!
(pq)j

√
n!

(n + 2j)!
≤ j!

((n + 1)pq)j
. (54)
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Proof. Set W = (F − I)j(I + p(F − I))n. Let us first prove (54). Under the present
assumptions, we have

F − I = −1
2
(I−1 − I)(I1 − I).

Therefore, using Lemma 5 in Roos [31], we obtain that

‖(F − I)j(I + p(F − I))n‖ =
1
2j

∥∥∥(I−1 − I)j(I1 − I)j
(
I +

p

2
(I−1 − I) +

p

2
(I1 − I)

)n∥∥∥
≤ 1

2j

( (j!)2 n!
(n + 2j)! (pq/2)2j

)1/2
,

from which (54) follows. Now we prove (53). For x ∈ R, we have

F̂ (x) = 2
∞∑

k=1

F ({k}) cos(kx), 1− F̂ (x) = 4
∞∑

k=1

F ({k}) sin2
(kx

2

)
∈ [0, 2],

Ŵ (x) = (F̂ (x)− 1)j(1 + p(F̂ (x)− 1))n.

Let n1, n2 ∈ (0,∞) such that n = n1 + n2. From (48), (50), and (51), it follows

|W |0 ≤ 1
2π

∫ π

−π
(1− F̂ (x))j |1− p(1− F̂ (x))|n dx

=
1
2π

∫ π

−π
(1− F̂ (x))j |1− p(1− F̂ (x))|n1 |1− p(1− F̂ (x))|n2 dx

≤
(

sup
y∈[0,2]

yj |1− py|n1

) 1
2π

∫ π

−π
|1− p(1− F̂ (x))|n2 dx

≤
√

2
n2p

( j

en1pq

)j
. (55)

It is easily seen that the upper bound in (55) attains its minimum for n1 = jn/(j + 1/2).
This leads us to (53). Now we show (52) by means of (47) with a = 0. The value of
b ∈ (0,∞) will be chosen later. We assume that j ∈ N. First note that, from the above, it
follows that

1
2π

∫ π

−π
|Ŵ (x)|2 dx ≤ 2

√
eq

(2j + 1/2
2e npq

)2j+1/2
= 2

√
eq

(4j + 1
4j

)2j+1/2( j

e npq

)2j+1/2

≤ 2
√

e
(5

4

)5/2√
q
( j

e npq

)2j+1/2
. (56)

We introduce an arbitrary quantity t ∈ (1,∞). Let us first assume that

t ≤ 4npq. (57)

Then, we have t ≤ n and t ≤ 4np. Using Cauchy’s inequality, we get∣∣∣ d
dx

F̂ (x)
∣∣∣ = 4

∣∣∣ ∞∑
k=1

kF ({k}) sin
(kx

2

)
cos

(kx

2

)∣∣∣ ≤ √
2σ(1− F̂ (x))1/2, (x ∈ R)

and therefore, for x ∈ R, y = 1− F̂ (x), k1 = 2(n− 1)−k2, k2 = 2cj−1(n− 1), and arbitrary
c ∈ (0, 1), we derive∣∣∣ d
dx

Ŵ (x)
∣∣∣2 ≤

∣∣∣ d
dx

F̂ (x)
∣∣∣2(1− F̂ (x))2j−2|j − (j + n)p(1− F̂ (x))|2|1− p(1− F̂ (x))|2(n−1)

≤ 2 σ2 y2j−1(j − (j + n)py)2|1− py|k1 |1− p(1− F̂ (x))|k2 . (58)
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On the one hand, if j ≤ (j + n)py, then (58) together with (51) and (57) gives∣∣∣ d
dx

Ŵ (x)
∣∣∣2 ≤ 2 σ2(j + n)2p2 supey∈[0,2]

(
ỹ2j+1|1− pỹ|k1

)
|1− p(1− F̂ (x))|k2

≤ 2 σ2(j + n)2p2
(2j + 1

ek1pq

)2j+1
|1− p(1− F̂ (x))|k2

=
2σ2

eq
j3 np

(j + n

jn

)2( (j + 1/2)n
(j − c)(n− 1)

)2j+1( j

e npq

)2j
|1− p(1− F̂ (x))|k2

≤ 2σ2

q
j3

√
(n− 1)n p h1(c, j, t)

( j

e npq

)2j
|1− p(1− F̂ (x))|k2 , (59)

where

h1(c, j, t) =
1
e

(j + t

jt

)2( (j + 1/2)t
(j − c)(t− 1)

)2j+1
√

t

t− 1
.

On the other hand, if j ≥ (j + n)py, then (58) together with (51) and (57) yields∣∣∣ d
dx

Ŵ (x)
∣∣∣2 ≤ 2 σ2j2 supey∈[0,2]

(
ỹ2j−1|1− pỹ|k1

)
|1− p(1− F̂ (x))|k2

≤ 2 σ2j2
(2j − 1

ek1pq

)2j−1
|1− p(1− F̂ (x))|k2

= 2σ2 j e npq
( (j − 1/2)n

(j − c)(n− 1)

)2j−1( j

e npq

)2j
|1− p(1− F̂ (x))|k2

≤ 2σ2

q
j3

√
(n− 1)n p h2(c, j, t)

( j

e npq

)2j
|1− p(1− F̂ (x))|k2 , (60)

where

h2(c, j, t) =
e
j2

( (j − 1/2)t
(j − c)(t− 1)

)2j−1
√

t

t− 1
.

Combining (59) and (60), we see that, under the assumption of (57), we have∣∣∣ d
dx

Ŵ (x)
∣∣∣2 ≤ 2σ2

q
j3

√
(n− 1)n p h3(c, j, t)

( j

e npq

)2j
|1− p(1− F̂ (x))|k2 , (61)

where
h3(c, j, t) = max{h1(c, j, t), h2(c, j, t)}.

Using (61) and (50), we obtain

1
2π

∫ π

−π

∣∣∣ d
dx

Ŵ (x)
∣∣∣2 dx ≤

2σ2 j7/2√np

q
√

c
h3(c, j, t)

( j

e npq

)2j
. (62)

From (47) in combination with (56) and (62), we conclude that, for arbitrary b ∈ (0,∞),

‖W‖2 ≤ (1 + bπ)
( 1

2π

∫ π

−π
|Ŵ (x)|2 dx +

1
2π b2

∫ π

−π

∣∣∣ d
dx

Ŵ (x)
∣∣∣2 dx

)
≤

( j

e npq

)2j
(1 + bπ)

[
2
(5

4

)5/2

√
j

np
+

2σ2 j7/2√np

b2q
√

c
h3(c, j, t)

]
. (63)
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Let b0 ∈ (0,∞) be arbitrary and set b = b0σj3/2
√

np/q. Then (63) implies that

‖W‖2 ≤
( j

e npq

)2j(
1 + b0σj3/2

√
np

q
π
)√

j

np

[
2
(5

4

)5/2
+

2 h3(c, j, t)
b2
0

√
c

]
≤ σ

√
q
j2

( j

e npq

)2j
T1, (64)

where

T1 = T1(b0, c, j, t) =
(√

4
t

+ b0π
)[

2
(5

4

)5/2
+

2 h3(c, j, t)
b2
0

√
c

]
.

Let us now assume that, in contrast to (57),

4npq < t.

Under this assumption, we get from (35) and (37) that

‖W‖2 ≤ e
√

j
( n

n + j

)n+j( j

npq

)j
≤ e

√
j

σ
√

q

( j

e npq

)j( t

4 npq

)j
=

σ
√

q
j2

( j

e npq

)2j
T2,

(65)
where

T2 = T2(j, t) =
e

j3/2

( et
4j

)j
.

From (64) and (65), it now follows that, for each choice of j, n ∈ N, p = 1 − q ∈ (0, 1),
b0 ∈ (0,∞), c ∈ (0, 1), and t ∈ (1,∞), we have

‖W‖2 = max{T1, T2}
σ
√

q
j2

( j

e npq

)2j
.

It remains to show that max{T1, T2} ≤ 45.22 ≤ (6.73)2. For given value of j, choose b0, c,
and t from the following table. It is easily verified that max{T1, T2} is then bounded by
the values given in the last column.

j b0 c t max{T1, T2} ≤
1 2.0525 0.14286 24.477 45.22
2 1.1921 0.18182 15.469 26.56
3 0.9071 0.20000 14.969 20.40
4 0.7529 0.21052 15.667 17.06

5 ≤ j 0.7529 0.21052 4j/e 35.18

The lemma is shown. �

3.4 Centered distributions

The main result of this section is Proposition 3.3 below, the proof of which requires some
preparation. Recall that, for W ∈ M, we denote by W = W+ − W− the Hahn–Jordan
decomposition of W . We shall use the following property of the compound measures

sup
F∈F

‖(F − I)j(I + p(F − I))n‖ = ‖(I1 − I)j(I + p(I1 − I))n‖, (66)

where j, n ∈ Z+ and p = 1 − q ∈ [0, 1]. In what follows, we need the following smoothing
estimate, which is proved by only a slight modification of inequalities of Esseen [16], Le
Cam [24], and Ibragimov and Presman [20]. However, for the sake of completeness, we
provide a proof.
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Lemma 3.9 Let W1,W2 ∈M with W1(R) = 0 and set W = W1 + W2. For y ∈ [0,∞), let

ρ(y) = min
{
|W+|y−, |W−|y−

}
.

Then, for arbitrary ϑ ∈ (0,∞) and r ∈ (0, 1),

|W | ≤ 1
2r
‖W1‖+

1
2π r

∫
|t|<1/ϑ

∣∣∣Ŵ2(t)
t

∣∣∣ dt +
1 + r

2r
ρ(4 η(r)ϑ),

where η(r) ∈ (0,∞) is defined by the equation

1 + r

2
=

2
π

∫ η(r)

0

sin2(x)
x2

dx. (67)

Proof. Le Cam ([24], Proposition 3, p. 182) has shown that, if W ∈M, F ∈ F , y ∈ [0,∞),
h ∈ [0, |F |y], and ρ is defined as above, then

(2h− 1)|W | ≤ |WF |+ h ρ(y). (68)

Let ϑ ∈ (0,∞) and F = Fϑ ∈ F have the Lebesgue density fϑ(x) = 2ϑ(πx2)−1 sin2(x/(2ϑ)),
(x ∈ R) and characteristic function

F̂ϑ(t) =
{

1− ϑ|t|, if |t| < 1/ϑ,
0, if |t| ≥ 1/ϑ,

for t ∈ R. If r ∈ (0, 1), y = 4η(r)ϑ, and h = (1 + r)/2, then we have

|Fϑ|y ≥
∫ y/2

−y/2
fϑ(x) dx =

2
π

∫ η(r)

0

sin2(x)
x2

dx =
1 + r

2
= h.

Therefore, (68) gives

r|W | ≤ 1
2
‖W1‖+ |W2Fϑ|+

1 + r

2
ρ(4η(r)ϑ).

From the Fourier inversion formula and the Riemann–Lebesgue Lemma, it follows that, for
x ∈ R,

W2Fϑ((−∞, x]) =
1
2π

∫
|t|<1/ϑ

e−itx Ŵ2(t)F̂ϑ(t)
−it

dt.

The proof is easily completed . �

Lemma 3.10 For F ∈ F , W ∈M with W (R) = 0, and ϑ ∈ (0,∞), we have

|(WF )+|ϑ− ≤
1
2
‖W‖ |F |ϑ−. (69)

Proof. In view of the simple fact that (WF )+ ≤ W+F , we obtain

|(WF )+|ϑ− ≤ sup
x∈R

∫
R

F ((x, x + ϑ]− y) dW+(y) ≤ W+(R) |F |ϑ− =
1
2
‖W‖ |F |ϑ−.

The proof is completed. �
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Lemma 3.11 Let A,B ∈ F , α = 1− β ∈ (0, 1], G = αA + βB, j, n ∈ Z+, and p = 1− q ∈
(0, 1). Then

‖(A− I)j(I + p(G− I))n‖ ≤
(

n + j

j

)−1/2(1− pβ

pqα

)j/2
. (70)

Proof. Set a = 1 − b = q/(1 − pβ). Then b = pα/(1 − pβ) and, taking into account (35)
and the Jensen inequality, we get

‖(A− I)j(I + p(G− I))n‖

=
∥∥∥(A− I)j(pβB + (1− pβ)(aI + bA))n

∥∥∥
≤

n∑
m=0

(
n

m

)
(pβ)n−m(1− pβ)m‖(A− I)j(I + b(A− I))m‖

≤ 1
(ab)j/2

n∑
m=0

(
n

m

)
(pβ)n−m(1− pβ)m

(
m + j

j

)−1/2

≤ 1
(ab)j/2

( n∑
m=0

(
n

m

)
(pβ)n−m(1− pβ)m

(
m + j

j

)−1)1/2

=
(

n + j

j

)−1/2(1− pβ

pqα

)j/2( n∑
m=0

(
n + j

m + j

)
(pβ)n−m(1− pβ)m+j

)1/2
,

from which the assertion follows. �

Proposition 3.3 Let F ∈ F , j, n ∈ N, and p = 1− q ∈ (0, 1). Then

inf
u∈R

|(IuF − I)j(I + p(IuF − I))n| ≤ 17.6
(j

e

)(j+1)/2 j

(npq)j/2+j/(2j+2)
. (71)

Proof. Let W = (IuF−I)j(I +p(IuF−I))n for a given u ∈ R. Let w ∈ (0,∞) be arbitrary.
We first assume that

npq > wj+1. (72)

As in Le Cam ([24], Section 5) or Ibragimov and Presman ([20], p. 719), we can choose
u ∈ R, ϑ−, ϑ+ ∈ [0,∞), and A,B ∈ F such that

IuF = αA + βB, α = 1− β =
w

(npq)1/(j+1)
∈ (0, 1), (73)

(IuF )((−∞,−ϑ−]) ≥ α

2
, (IuF )([ϑ+,∞)) ≥ α

2
, (74)

A((−ϑ−, ϑ+)) = 0, B([−ϑ−, ϑ+]) = 1,

∫
R

xdB(x) = 0. (75)

Set ϑ = max(ϑ−, ϑ+) and σ2 =
∫

R x2 dB(x). Then, as shown in Arak and Zăıtsev ([1],
Theorem 1.1.10, p. 16–17), for t ∈ R, we have

|B̂(t)− 1| ≤ σ2t2

2
, (76)

and, if ϑ > 0 and |t| ≤ 1/ϑ, then

σ2t2 ≤ 1, Re(B̂(t))− 1 ≤ −σ2t2

3
. (77)
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Set
W1 = αj(A− I)j(I + p(IuF − I))n, W2 = W −W1.

Let us first derive a bound for ‖W1‖. Taking into account (70) and (37), we get

‖W1‖ = αj
∥∥∥(A− I)j(I + p(αA + βB − I))n

∥∥∥
≤

√
e j1/4

( n

n + j

)(n+j)/2((q + pα)αj

npq

)j/2

≤ e wj/2

j5/4

(j

e

)(j+1)/2 j

(npq)j/2+j/(2j+2)
. (78)

If ϑ = 0, then B = I and W = W1, and therefore

|W | ≤ 1
2
‖W1‖ ≤ T1

(j

e

)(j+1)/2 j

(npq)j/2+j/(2j+2)
,

where

T1 := T1(j, w) :=
e wj/2

2 j5/4
. (79)

Let us now assume that ϑ > 0. Here, we shall apply Lemma 3.9, giving

|W | ≤ 1
2r
‖W1‖+

1
2πr

∫
|t|<1/ϑ

∣∣∣Ŵ2(t)
t

∣∣∣ dt +
1 + r

2r
d4 η(r)e|W+|ϑ−, (80)

where r ∈ (0, 1) will be chosen later and η(r) is defined by (67). Let

n1 = n−
⌊ n

j + 1

⌋
, n2 =

⌊ n

j + 1

⌋
.

We then have n1 ∈ N, n2 ∈ Z+, and

1
n1

≤ j + 1
j n

,
1

n2 + 1
≤ j + 1

n
. (81)

Taking into account (69), (66), (35), (49), (37), (73)–(75), and (81), we obtain

|W+|ϑ− ≤ 1
2
‖(I1 − I)j(I + p(I1 − I))n1‖ |(I + p(IuF − I))n2 |ϑ−

≤ 1
2

(
n1 + j

j

)−1/2

(pq)−j/2 1√
(n2 + 1)(1− q − p|IuF |ϑ−)

≤
√

e
2

j1/4
( n1

n1 + j

)(n1+j)/2( j

n1pq

)j/2 1√
(n2 + 1)pα

≤ e
j3/4

(j + 1
j

)(j+1)/2
√

q

2w

(j

e

)(j+1)/2 j

(npq)j/2+j/(2j+2)
. (82)

It remains to estimate the integral in (80). For t ∈ R, we have

Ŵ2(t) = [(α(Â(t)− 1) + β(B̂(t)− 1))j − (α(Â(t)− 1))j ][1 + p(eituF̂ (t)− 1)]n

= jβ[B̂(t)− 1]
∫ 1

0
[α(Â(t)− 1) + xβ(B̂(t)− 1)]j−1dx [1 + p(eituF̂ (t)− 1)]n. (83)
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It is easy to check that, for t ∈ R,

|1 + p(eituF̂ (t)− 1)|n ≤ exp{−npq α[1− Re(Â(t))]− npq β[1− Re(B̂(t))]}. (84)

Let
ñ1 =

(j − 1)n
j + 1

, ñ2 =
2n

j + 1
.

Note that, here, we do not need to assume ñ1 and ñ2 to be integers. Then, by using (83)
and (84), for t ∈ R, we get

|Ŵ2(t)| ≤ jβ|B̂(t)− 1| exp{−ñ2pq β[1− Re(B̂(t))]}

×
∫ 1

0
(α + xβ)j−1

∣∣∣1− ( α

α + xβ
Â(t) +

xβ

α + xβ
B̂(t)

)∣∣∣j−1
dx

× exp{−npq α[1− Re(Â(t))]− ñ1pq β[1− Re(B̂(t))]}.

Since, for G ∈ F and t ∈ R,

|1− Ĝ(t)|2 ≤ 2[1− Re(Ĝ(t))], (85)

and, for all x, ζ, k ∈ (0,∞), xke−ζx ≤
(
k/(eζ)

)k, we obtain, for x ∈ (0, 1) and t ∈ R,

(α + xβ)j−1
∣∣∣1− ( α

α + xβ
Â(t) +

xβ

α + xβ
B̂(t)

)∣∣∣j−1

× exp{−npq α[1− Re(Â(t))]− ñ1pq β[1− Re(B̂(t))]}

≤ (2(α + xβ))(j−1)/2
[
α[1− Re(Â(t))] + xβ[1− Re(B̂(t))]

](j−1)/2

× exp{−ñ1pq
(
α[1− Re(Â(t))] + xβ[1− Re(B̂(t))]

)
}

≤
( j − 1

eñ1pq

)(j−1)/2
.

This yields

|Ŵ2(t)| ≤ jβ
( j − 1

eñ1pq

)(j−1)/2
|B̂(t)− 1| exp{−ñ2pq β[1− Re(B̂(t))]}. (86)

Due to (76) and (77), we have∫
|t|<1/ϑ

∣∣∣B̂(t)− 1
t

∣∣∣ exp{−ñ2pq β[1− Re(B̂(t))]}dt

≤ σ2

∫ ∞

0
t exp

{
−1

3
ñ2pq β(σt)2

}
dt =

3
2ñ2pqβ

. (87)

From (86) and (87), it follows that∫
|t|<1/ϑ

∣∣∣Ŵ2(t)
t

∣∣∣ dt ≤ 3e
4
√

w

(j + 1
e

)(j+1)/2 j

(npq)j/2+j/(2j+2)
. (88)

Collecting the estimates (88), (82), (80), and (78), we get, under the assumption of (72) for
all possible values of ϑ ≥ 0, that

|W | ≤ T2

(j

e

)(j+1)/2 j

(npq)j/2+j/(2j+2)
, (89)
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where

T2 = T2(j, r, w)

=
e wj/2

2r j5/4
+

3e
8πr

√
w

(j + 1
j

)(j+1)/2
+

1 + r

2r
d4 η(r)e e

j3/4

(j + 1
j

)(j+1)/2 1√
2w

.

Here, we used the fact that T1 ≤ T2. If, in contrast to (72), npq ≤ wj+1, then, by (66),
(35), and (37), we have

|W | ≤ 1
2
‖W‖ ≤

√
e

2
j1/4

( n

n + j

)(n+j)/2( j

npq

)j/2 wj/2

(npq)j/(2j+2)

≤ T1

(j

e

)(j+1)/2 j

(npq)j/2+j/(2j+2)
, (90)

where T1 is defined in (79). Combining (89) and (90), we see that (89) is generally valid.
Let r = 0.6295, giving d4η(r)e = 7. If j = 1, then set w = 16.6; if j = 2, then set w = 5;
and if j ≥ 3, then set w = 1. It is not difficult to show that, under these assumptions,
T2 ≤ 17.6. This proves the validity of (71). �

Corollary 3.1 Let F ∈ F , j ∈ N, t ∈ (0,∞). Then

inf
u∈R

|(IuF − I)j exp{t(IuF − I)}| ≤ 17.6
(j

e

)(j+1)/2 j

tj/2+j/(2j+2)
. (91)

Proof. Choose n ∈ N such that t/n < 1. By (71), there exists u = u(n) ∈ R such that∣∣∣(IuF − I)j
(
I +

t

n
(IuF − I)

)n∣∣∣ ≤ t

n
+ 17.6

(j

e

)(j+1)/2 j

(t(1− t/n))j/2+j/(2j+2)
.

Then, in view of (30),

|(IuF − I)j exp{t(IuF − I)}| ≤
∣∣∣(IuF − I)j

(
exp{t(IuF − I)} −

(
I +

t

n
(IuF − I)

)n)∣∣∣
+

∣∣∣(IuF − I)j
(
I +

t

n
(IuF − I)

)n∣∣∣
≤ 2j−1

∥∥∥ exp{t(I1 − I)} −
(
I +

t

n
(I1 − I)

)n∥∥∥
+

t

n
+ 17.6

(j

e

)(j+1)/2 j

(t(1− t/n))j/2+j/(2j+2)

→ 17.6
(j

e

)(j+1)/2 j

tj/2+j/(2j+2)
,

as n →∞. This proves the assertion. �

It should be noted that Corollary 3.1 is an improvement of Theorem 3.1 in Čekanavičius [7]
in the sense that it contains an explicit estimate.

3.5 Asymptotically sharp norm estimates

The next lemma is needed in the proof of Proposition 3.4 below. A proof can be found in
Čekanavičius and Roos ([12], Lemma 4.7). Recall that ϕj , (j ∈ Z+) is defined in (4).
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Lemma 3.12 Let j ∈ Z+, t ∈ (0,∞), and F = 2−1(I−1 + I1). Then∣∣∣‖(F − I)j exp{t(F − I)}‖ − ‖ϕ2j‖1

(2t)j

∣∣∣ ≤ C(j)
tj+1/2

, (j 6= 0),∣∣∣|(F − I)j exp{t(F − I)}| − ‖ϕ2j−1‖∞
(2t)j

∣∣∣ ≤ C(j)
tj+1/2

, (j 6= 0),∣∣∣|(F − I)j exp{t(F − I)}|0 −
‖ϕ2j‖∞
2j tj+1/2

∣∣∣ ≤ C(j)
tj+1

.

The following proposition is an improvement of Lemma 4.9 in Čekanavičius and Roos [12],
where it was assumed that 0 < p ≤ C < 1/2.

Proposition 3.4 Let j ∈ Z+, n ∈ N, p = 1− q ∈ (0, 1), and F = 2−1(I−1 + I1). Then∣∣∣‖(F − I)j(I + p(F − I))n‖ − ‖ϕ2j‖1

(2np)j

∣∣∣ ≤ C(j)
q(npq)j+1/2

, (j 6= 0), (92)∣∣∣|(F − I)j(I + p(F − I))n| − ‖ϕ2j−1‖∞
(2np)j

∣∣∣ ≤ C(j)
q(npq)j+1/2

, (j 6= 0), (93)∣∣∣|(F − I)j(I + p(F − I))n|0 −
‖ϕ2j‖∞

2j(np)j+1/2

∣∣∣ ≤ C(j)
q(npq)j+1

. (94)

Proof. We use the second bound in (38) under the assumption that p1 = · · · = pn = p and
r = q. Together with Lemma 3.12 and (45), we obtain, for j 6= 0, that∣∣∣‖(F − I)j(I + p(F − I))n‖ − ‖ϕ2j‖1

(2np)j

∣∣∣ ≤ T1 + T2,

where

T1 := ‖(F − I)j+2 exp{npq(F − I)}‖ ‖g(F )‖ ≤ C(j) np2

(npq)j+3/2
≤ C(j)

q(npq)j+1/2
,

T2 :=
∣∣∣‖(F − I)j exp{np(F − I)}‖ − ‖ϕ2j‖1

(2np)j

∣∣∣ ≤ C(j)
(np)j+1/2

≤ C(j)
q(npq)j+1/2

.

Here, g is the same as in Lemma 3.2. The bound (92) is proved. Inequalities (93) and (94)
are shown in the same way. Note that, for the local norm, we used (46) instead of (45). �

The next goal is Proposition 3.5 below. For its proof, we need two lemmas. The next
lemma is needed in the proof of Lemma 3.14 below. Its proof is elementary but somewhat
lengthy.

Lemma 3.13 Let j ∈ Z+, n ∈ N, p = 1− q ∈ (0, 1), b̃, y ∈ R, and a = np + b̃. Then[
(eiy − 1)j(q + peiy)ne−iay

]′′
=

[
− j(j − 1)(eiy − 1)j−2(q + peiy)n − 2j npq (eiy − 1)j(q + peiy)n−1

− npq (eiy − 1)j(q + peiy)n−2 − (npq)2(eiy − 1)j+2(q + peiy)n−2

− j(j − 1)(eiy + 1)(eiy − 1)j−1(q + peiy)n − jeiy(eiy − 1)j−1(q + peiy)n

− 2j npq (eiy − 1)j+1(q + peiy)n−1 + 2jb̃eiy(eiy − 1)j−1(q + peiy)n

+ 2b̃ npq (eiy − 1)j+1(q + peiy)n−1 − npq (eiy − 1)j+1(q + peiy)n−2

−b̃2(eiy − 1)j(q + peiy)n
]
e−iay,

where the derivatives are carried out with respect to y.
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Proof. We have [
(eiy − 1)j(q + peiy)ne−iay

]′′ = T1 + T2 + T3,

where

T1 =
[
(eiy − 1)j

]′′(q + peiy)ne−iay, T2 = 2jieiy(eiy − 1)j−1
[
(q + peiy)ne−iay

]′
,

T3 = (eiy − 1)j
[
(q + peiy)ne−iay

]′′
.

The term T1 can be evaluated in the following way:

T1 =
[
− j(j − 1)ei2y(eiy − 1)j−2 − jeiy(eiy − 1)j−1

]
(q + peiy)ne−iay

=
[
− j(j − 1)(eiy − 1)j−2 − j(j − 1)(eiy + 1)(eiy − 1)j−1

− jeiy(eiy − 1)j−1
]
(q + peiy)ne−iay.

For the calculation of T2, we define a centered characteristic function h(y) = qe−ipy +peiqy =
(q + peiy)e−ipy. Then, we have

(q + peiy)ne−iay =
(
qe−ipy + peiqy

)ne−ieby = hn(y)e−ieby,
[hn(y)]′ = nhn−1(y)h′(y) = nhn−1(y)(−ipqe−ipy + ipqeiqy)

= inpq hn−1(y)e−ipy(eiy − 1) = i npq (q + peiy)n−1e−inpy(eiy − 1),[
hn(y)e−ieby]′ = inpq (q + peiy)n−1(eiy − 1)e−iay − ĩb(q + peiy)ne−iay.

Consequently,

T2 = −2j npq eiy(eiy − 1)j(q + peiy)n−1e−iay + 2jb̃eiy(eiy − 1)j−1(q + peiy)ne−iay

=
[
− 2j npq (eiy − 1)j(q + peiy)n−1 − 2j npq (eiy − 1)j+1(q + peiy)n−1

+ 2jb̃eiy(eiy − 1)j−1(q + peiy)n
]
e−iay.

The term T3 can be treated, taking into account that the second derivative of hn(y) is equal
to

[hn(y)]′′ = inpq
[
(q + peiy)n−1e−inpy(eiy − 1)

]′
= inpq

[
(n− 1)(q + peiy)n−2ipeiye−inpy(eiy − 1)

−(q + peiy)n−1 inp e−inpy(eiy − 1) + (q + peiy)n−1e−inpyieiy
]

= −npq (q + peiy)n−2e−inpy
[
(n− 1)peiy(eiy − 1)− np(q + peiy)(eiy − 1)

+ (q + peiy)eiy
]

= −npq (q + peiy)n−2e−inpy
[
npeiy(eiy − 1)− np(eiy − 1)− np2(eiy − 1)2 + eiy

]
= −npq (q + peiy)n−2e−inpy

[
eiy + npq (eiy − 1)2

]
= −(npq)2(eiy − 1)2(q + peiy)n−2e−inpy − npq eiy(q + peiy)n−2e−inpy

= −(npq)2(eiy − 1)2(q + peiy)n−2e−inpy − npq (q + peiy)n−2e−inpy

−npq (eiy − 1)(q + peiy)n−2e−inpy.
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Therefore,[
(q + peiy)ne−iay

]′′ =
[
hn(y)e−ieby]′′ = [hn(y)]′′e−ieby + 2[hn(y)]′[e−ieby]′ + hn(y)[e−ieby]′′

= [hn(y)]′′e−ieby + 2inpq (q + peiy)n−1e−inpy(eiy − 1)(−ĩb)e−ieby
+ hn(y)(−ĩb)2e−ieby

=
[
− (npq)2(eiy − 1)2(q + peiy)n−2 − npq (q + peiy)n−2

− npq (eiy − 1)(q + peiy)n−2 + 2b̃ npq (eiy − 1)(q + peiy)n−1

− b̃2(q + peiy)n
]
e−iay.

To get T3, it remains to multiply the last identity by (eiy − 1)j . Combining the equalities
for T1, T2, T3, the proof is easily completed. �

In what follows, some notation is needed. For a sequence f : Z −→ R, let ∆0f(m) = f(m),
(m ∈ Z) and

∆jf(m) := ∆j−1f(m− 1)−∆j−1f(m), (m ∈ Z, j ∈ N).

For p = 1 − q ∈ [0, 1], j, n ∈ Z+, and m ∈ Z, we set bi(m,n, p) := Bi(n, p, I1)({m}) and
write ∆jbi(m, n, p) = (∆jbi(·, n, p))(m).

Lemma 3.14 Let j ∈ Z+, n ∈ N, and p = 1 − q ∈ (0, 1). Let S be a set and b :
N× (0, 1)× R× S −→ R be a bounded function. Then

sup
z∈S

sup
x∈R

∣∣∣(npq)(j+1)/2∆jbi(m, n, p)− (−1)jϕj(x)
∣∣∣ ≤ C(j)

√
npq

, (95)

sup
z∈S

sup
x∈R

(1 + x2)
∣∣∣(npq)(j+1)/2∆jbi(m, n, p)− (−1)jϕj(x)

∣∣∣ ≤ C(j)
√

npq
, (96)

where m = bnp + x
√

npq + b(n, p, x, z)c.

Proof. We have m = np+x
√

npq+ b̃, where b̃ = b̃(n, p, x, z) is a new function with |̃b| ≤ C1

and C1 is an absolute constant. Without loss of generality, we may assume that n ≥ 3.
Indeed, by using simple calculus, we see that, for n < 3, the left-hand sides of (95) and (96)
are bounded by C(j)/

√
pq. Further, we may assume that m ≥ 0. In fact, if m < 0, then

∆jbi(m,n, p) = 0 and the estimates in (95) and (96) follow from the definition of ϕj(x);
note that, here, it can be used that, either npq ≤ 2C1, or npq ≥ 2C1, the latter of which
implies that

x ≤ −np− b̃
√

npq
≤ −√npq +

C1√
npq

≤ −
√

npq

2
.

Let us now assume that m ≥ 0. Then, by using the Fourier inversion formula, we obtain

(npq)(j+1)/2∆jbi(m,n, p) =
(npq)(j+1)/2

2π

∫ π

−π
e−imy (eiy − 1)j(q + peiy)n dy. (97)

On the other hand, for x ∈ R, we have

(−1)jϕj(x) =
1
2π

∫
R
(iy)j e−ixy e−y2/2 dy

=
1
2π

∫
|y|>π

√
npq

(iy)j e−ixy e−y2/2 dy

+
(npq)(j+1)/2

2π

∫ π

−π
e−imy(iy)j exp

{
iy(np + b̃)− npq y2

2

}
dy. (98)
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The absolute value of the first integral in (98) is bounded by C(j)e−C npq. Therefore, for
the proof of (95), it suffices to give a bound for the difference between the integral in (97)
and the second one in (98). For this, we need some preparation. It is well-known that, for
z ∈ C and k ∈ Z+, ∣∣∣ez −

k∑
m=0

zm

m!

∣∣∣ ≤ |z|k+1

(k + 1)!
emax{Re(z), 0}. (99)

Using (99), it is easily shown that, for y ∈ R,

|(iy)j − (eiy − 1)j | ≤
j∑

m=1

|y|m−1|eiy − 1− iy||eiy − 1|j−m ≤ j

2
|y|j+1, (100)

|eieby − 1| ≤ C1|y|, (101)

and, for |y| ≤ π,

|qe−ipy + peiqy − e−pqy2/2| ≤ q
∣∣∣e−ipy − 1 + ipy − (ipy)2

2

∣∣∣ + p
∣∣∣eiqy − 1− iqy − (iqy)2

2

∣∣∣
+

∣∣∣1− pqy2

2
+

(pqy2)2

8
− e−pqy2/2

∣∣∣ +
(pqy2)2

8
≤ C pq |y|3. (102)

Further, for |y| ≤ π,

|q + peiy| =
(
1− 4pq sin2

(y

2

))1/2
≤ exp

{
−2pq sin2

(y

2

)}
≤ exp

{
−2pqy2

π2

}
. (103)

Using (102) and (103), for |y| ≤ π, we get∣∣∣(q + peiy)n − exp
{

inpy − npq y2

2

}∣∣∣
≤

n∑
m=1

|q + peiy|m−1
∣∣∣q + peiy − exp

{
ipy − pqy2

2

}∣∣∣ exp
{
−(n−m)pq y2

2

}
≤ C n exp

{
− 2

π2
npq y2

}
|qe−ipy + peiqy − e−pqy2/2|

≤ C npq |y|3 exp{−C npq y2}

≤ C
√

npq
exp{−C npq y2}. (104)

Finally, we need ∫ π

−π
|y|j exp{−C npq y2}dy ≤ C(j)

(npq)(j+1)/2
. (105)

Using the triangle inequality together with (97), (98), (100), (101), (104), and (105), the
proof of (95) is easily completed. Let us now show (96). Set a = np + b̃. Then, in view of
(97), integrating by parts and using Lemma 3.13, we obtain

2πx2(npq)(j+1)/2∆jbi(m,n, p)

= −(npq)(j−1)/2

∫ π

−π

[
(eiy − 1)j(q + peiy)ne−iay

]′′e−i(m−a)y dy

= J1 + · · ·+ J5, (106)
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where the derivatives are carried out with respect to y and

J1 = j(j − 1) (npq)(j−1)/2

∫ π

−π
(eiy − 1)j−2(q + peiy)ne−imy dy,

J2 = 2j (npq)(j+1)/2

∫ π

−π
(eiy − 1)j(q + peiy)n−1e−imy dy,

J3 = (npq)(j+1)/2

∫ π

−π
(eiy − 1)j(q + peiy)n−2e−imy dy,

J4 = (npq)(j+3)/2

∫ π

−π
(eiy − 1)j+2(q + peiy)n−2e−imy dy,

J5 = j(j − 1) (npq)(j−1)/2

∫ π

−π
(eiy + 1)(eiy − 1)j−1(q + peiy)ne−imy dy

+j (npq)(j−1)/2

∫ π

−π
eiy(eiy − 1)j−1(q + peiy)ne−imy dy

+2j (npq)(j+1)/2

∫ π

−π
(eiy − 1)j+1(q + peiy)n−1e−imy dy

−2jb̃ (npq)(j−1)/2

∫ π

−π
eiy(eiy − 1)j−1(q + peiy)ne−imy dy

−2b̃ (npq)(j+1)/2

∫ π

−π
(eiy − 1)j+1(q + peiy)n−1e−imy dy

+(npq)(j+1)/2

∫ π

−π
(eiy − 1)j+1(q + peiy)n−2e−imy dy

+b̃2 (npq)(j−1)/2

∫ π

−π
(eiy − 1)j(q + peiy)ne−imy dy.

Similarly,

2πx2(−1)jϕj(x) = −
∫

R

[
(iy)je−y2/2

]′′e−ixy dy = J̃0 + · · ·+ J̃4, (107)

where

J̃0 = −
∫
|y|>π

√
npq

[
(iy)je−y2/2

]′′e−ixy dy,

J̃1 = j(j − 1) (npq)(j−1)/2

∫ π

−π
(iy)j−2 exp

{
iy(np + b̃)− npq y2

2

}
e−imy dy,

J̃2 = 2j (npq)(j+1)/2

∫ π

−π
(iy)j exp

{
iy(np + b̃)− npq y2

2

}
e−imy dy,

J̃3 = (npq)(j+1)/2

∫ π

−π
(iy)j exp

{
iy(np + b̃)− npq y2

2

}
e−imy dy,

J̃4 = (npq)(j+3)/2

∫ π

−π
(iy)j+2 exp

{
iy(np + b̃)− npq y2

2

}
e−imy dy.

In view of (95), (106), and (107), we see that (96) is shown, if we give suitable bounds
for |J̃0|, |J5|, and |J` − J̃`|, (` ∈ {1, . . . , 4}). Clearly, |J̃0| ≤ C(j)e−C npq. Further, we get
|J5| ≤ C(j)(npq)−1/2, where we used that∫ π

−π
|eiy − 1|k|q + peiy|n dy ≤ C(k)

(npq)(k+1)/2
, (k ∈ Z+).
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The latter inequality easily follows from (99), (103), and (105). With the help of the simple
inequality

|ez1 − ez2 | ≤ |z1 − z2|emax{Re(z1), Re(z2)}, (z1, z2 ∈ C),

we obtain, for |y| ≤ π and k ∈ {1, 2},∣∣∣ exp
{

i (n− k)py − (n− k)pq y2

2

}
− exp

{
inpy − npq y2

2

}∣∣∣ ≤ C
√

npq
exp{−C npq y2}.

Together with (104), for |y| ≤ π and k ∈ {0, 1, 2}, this yields∣∣∣(q + peiy)n−k − exp
{

inpy − npq y2

2

}∣∣∣ ≤ C
√

npq
exp{−C npq y2}. (108)

Now, using (100), (101), (108), and (105), it can be shown that |J` − J̃`| ≤ C(j)(npq)−1/2,
(` ∈ {1, . . . , 4}). This completes the proof of (96). �

Proposition 3.5 For j ∈ Z+, n ∈ N, and p = 1− q ∈ (0, 1), we have∣∣∣‖(I1 − I)j(I + p(I1 − I))n‖ − ‖ϕj‖1

(npq)j/2

∣∣∣ ≤ C(j)
(npq)(j+1)/2

, (j 6= 0), (109)∣∣∣|(I1 − I)j(I + p(I1 − I))n| − ‖ϕj−1‖∞
(npq)j/2

∣∣∣ ≤ C(j)
(npq)(j+1)/2

, (j 6= 0), (110)∣∣∣|(I1 − I)j(I + p(I1 − I))n|0 −
‖ϕj‖∞

(npq)(j+1)/2

∣∣∣ ≤ C(j)
(npq)j/2+1

. (111)

Proof. By using Lemma 3.14 and the fact that

‖(I1 − I)j(I + p(I1 − I))n‖ =
∞∑

m=0

|∆jbi(m,n, p)|

=
√

npq

∞∑
m=0

∫ (m+1−np)/
√

npq

(m−np)/
√

npq
|∆jbi(m,n, p)|dx

=
√

npq

∫
R
|∆jbi(bnp + x

√
npqc, n, p)|dx

and, similarly,

|(I1 − I)j(I + p(I1 − I))n|0 = sup
x∈R

|∆jbi(bnp + x
√

npqc, n, p)|,

the proofs of (109) and (111) are easily completed. Inequality (110) follows from (111) and
the simple equality

|(I1 − I)j(I + p(I1 − I))n| = |(I1 − I)j−1(I + p(I1 − I))n|0,

for j, n ∈ N and p = 1− q ∈ (0, 1). �

Remark 3.1 In Roos ([29], Lemma 8), using direct calculations, it was shown that∣∣∣‖(I1 − I)2(I + p(I1 − I))n‖ − ‖ϕ2‖1

npq

∣∣∣ ≤ C

(npq)2
,∣∣∣|(I1 − I)2(I + p(I1 − I))n|0 −

‖ϕ2‖∞
(npq)3/2

∣∣∣ ≤ C

(npq)5/2
,

which is better than (109) and (111) for j = 2, respectively. It is not clear how to obtain
analogous improvements of these bounds for j 6= 2.
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4 Proofs of the main results

Proof of Theorem 2.1. Using (6), we obtain

‖GPB(n, p, F )− EBi(n, p, F ; s)‖

=
∥∥∥GPB(n, p, F )

[
I − exp

{
−

n∑
j=1

∞∑
m=s+1

(−1)m+1

m
Um

j

}]∥∥∥
≤ exp

{ n∑
j=1

∞∑
m=s+1

‖Uj‖m

m

}
− 1 ≤ exp

{ 1
s + 1

n∑
j=1

‖Uj‖s+1

1− ‖Uj‖

}
− 1,

where, in view of (5), under the present assumptions, ‖Uj‖ ≤ 2|pj − p|/(1− 2p) < 1. Now
the assertion follows. �

The proofs of Theorems 2.2 and 2.3 require the following lemma. Recall that we write
D = D(n, p, F ; s).

Lemma 4.1 Let F ∈ F and assume that pmax ≤ 1/5. Then

GPB(n, p, F )− EBi(n, p, F ; s) = W1W2W3W4, (112)

where

W1 = (F − I)s+1(I + p(F − I))ns,1 ,

W2 =
n∑

j=1

∞∑
m=s+1

(−1)m+1

m
U

m−(s+1)
j (pj − p)s+1

( ∞∑
k=0

(−p)k(F − I)k
)s+1

,

W3 =
∞∑

k=1

1
k!

( n∑
j=1

∞∑
m=s+1

(−1)m+1

m
Um

j

)k−1
(I + p(F − I))ns,2 ,

W4 = D(I + p(F − I))ns,3 ,

ns,1 = bn/10c, ns,2 = bysnc with y1 = 0.9, y2 = 0.36, y3 = 0.19, y4 = 0.11, y5 = y6 = y7 =
· · · = 0.06, and ns,3 = n− ns,1 − ns,2. The following estimates are valid:

‖W2‖ ≤
νs+1

(s + 1)(1− 2p)s(1− 2(δ + p))
, ‖W3‖ ≤

1.4
1− 2p

, ‖W4‖ ≤ 2.61.

Proof. Equation (112) follows from the fact that

GPB(n, p, F )− EBi(n, p, F ; s) =
[
exp

{ n∑
j=1

∞∑
m=s+1

(−1)m+1

m
Um

j

}
− I

]
D(I + p(F − I))n.

(113)
The norm ‖W2‖ is estimated as follows. Using (5) and the inequalities δ ≤ 1/5 and p ≤ 1/5,
we obtain

‖W2‖ ≤
νs+1

(1− 2p)s+1

∞∑
m=s+1

1
m

( 2δ

1− 2p

)m−(s+1)
≤ νs+1

(s + 1)(1− 2p)s(1− 2(δ + p))
.

Let us now estimate ‖W3‖. Using (5), (35), the fact that

γ2

λ q
≤ δ min

{
1,

δ

4p q

}
≤ 1

5
min

{
1,

1
20p q

}
, (114)
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(see (12)) in combination with Stirling’s formula (40) and the inequality n/(ns,2 +1) ≤ y−1
s ,

we obtain

(1− 2p)‖W3‖ ≤
∞∑

k=1

1
k!

∥∥∥( n∑
j=1

∞∑
m=s+1

(−1)m+1

m
Um

j

)k−1
(I + p(F − I))ns,2+1

∥∥∥
≤ 1 +

∞∑
k=1

1
(k + 1)!

[ n∑
j=1

∞∑
m=s+1

‖Uj‖m−2

m
‖U2

j (I + p(F − I))b(ns,2+1)/kc‖
]k

≤ 1 +
∞∑

k=1

1
(k + 1)!

[ ∞∑
m=s+1

1
m

( 2δ

1− 2p

)m−2 γ2

(1− 2p)2

× ‖(F − I)2(I + p(F − I))b(ns,2+1)/kc‖
]k

≤ 1 +
∞∑

k=1

1
(k + 1)

√
2π k

[ n

(ns,2 + 1)
e
√

2
(1− 2p)2

γ2

λ q

∞∑
m=s+1

1
m

( 2δ

1− 2p

)m−2]k

≤ 1 +
∞∑

k=1

(fs(p))k

(k + 1)
√

2π k
,

where, for p ∈ [0, 1/5],

fs(p) =
e
√

2
5ys(1− 2p)2

min
{

1,
1

20p (1− p)

} ∞∑
m=s+1

1
m

( 2
5(1− 2p)

)m−2
.

Since p ∈ [0, 1/5], we see that p ≤ 1/2 − 1/
√

5 =: c0 is equivalent to 20p q ≤ 1. It easily
follows that, for s = 1, . . . , 5, fs(p) ≤ maxc0≤p≤1/5 fs(p) ≤ 0.9. This and the fact that fs(p)
is decreasing in s ∈ {5, 6, 7, . . . } leads to the bound fs(p) ≤ 0.9 for all s ∈ N, which shows
that (1 − 2p)‖W3‖ < 1.4. By similar arguments, we now prove that ‖W4‖ ≤ 2.61. Using
(5), (35), (114), the inequality n/ns,3 ≤ 1/(0.9− ys), and Stirling’s formula (40), we obtain

‖W4‖ =
∥∥∥ exp

{ n∑
j=1

s∑
m=2

(−1)m+1

m
Um

j

}
(I + p(F − I))ns,3

∥∥∥
≤ 1 +

∞∑
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1
k!

∥∥∥( n∑
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m
Um

j

)k
(I + p(F − I))ns,3

∥∥∥
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m
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j (I + p(F − I))bns,3/kc‖
]k
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1
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[ s∑
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( 2δ
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≤ 1 +
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γ2
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1
m

( 2δ
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)m−2]k

≤ 1 +
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(gs(p))k

√
2π k

,

where, for p ∈ [0, 1/5],

gs(p) =
e
√

2
5(0.9− ys)(1− 2p)2

min
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1

20p (1− p)

} s∑
m=2

1
m

( 2
5(1− 2p)

)m−2
.
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Similarly to the above, we get gs(p) ≤ maxc0≤p≤1/5 gs(p) ≤ 0.9. This implies that, indeed,
‖W4‖ ≤ 2.61. �

Proof of Theorems 2.2 and 2.3. The proof of (14)–(17) and (19)–(20) is done with the
help of Lemma 4.1, where it remains to estimate the norm terms of W1. Here we apply
Lemma 3.1, (71), (43), (44), (52), and (53). The theorems are proved. �

For the proofs of Theorems 2.4 and 2.5, we need the following lemma.

Lemma 4.2 Let F ∈ F and assume that pmax ≤ 1/5. Then

GPB(n, p, F )−EBi(n, p, F ; s)+
γs+1

s + 1
(F−I)s+1(I+p(F−I))n = V1+V2+V3+V4, (115)

where

V1 =
[
exp

{ n∑
j=1

∞∑
m=s+1

(−1)m+1

m
Um

j

}
− I −

n∑
j=1

∞∑
m=s+1

(−1)m+1

m
Um

j

]
D(I + p(F − I))n,

V2 =
n∑

j=1

∞∑
m=s+1

(−1)m+1

m
Um

j (D − I)(I + p(F − I))n,

V3 =
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j=1
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m=s+2

(−1)m+1

m
Um

j (I + p(F − I))n,

V4 = − γs+1

s + 1

[( ∞∑
m=0

(−p)m(F − I)m
)s+1

− I
]
(F − I)s+1(I + p(F − I))n.

The following estimates are valid:

‖V1‖ ≤ C(s)
ν2

s+1

λs+1
, ‖V2‖ ≤ C(s)

νs+1 γ2

λ(s+3)/2
,

‖V3‖ ≤ C(s)
νs+2

λ(s+2)/2
, ‖V4‖ ≤ C(s)

p |γs+1|
λ(s+2)/2

.

If F = I1, then

|V1|0 ≤ C(s)
ν2

s+1

λs+3/2
, |V2|0 ≤ C(s)

νs+1 γ2

λ(s+4)/2
,

|V3|0 ≤ C(s)
νs+2

λ(s+3)/2
, |V4|0 ≤ C(s)

p |γs+1|
λ(s+3)/2

.

If F ∈ S is concentrated on Z \ {0}, then

‖V1‖ ≤ C(s)
√

σ ν2
s+1

λ2(s+1)
, ‖V2‖ ≤ C(s)

√
σ νs+1 γ2

λs+3
,

‖V3‖ ≤ C(s)
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λs+2
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√
σ p |γs+1|
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,

|V1|0 ≤ C(s)
ν2
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λ2s+5/2
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,
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p |γs+1|
λs+5/2

.
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Proof. Equality (115) is easily shown with the help of (113). The proofs of the norm
estimates are similar to those of Lemma 4.1 and therefore omitted. For the local norm
estimates, we additionally used (36) and (53). �

Proof of Theorems 2.4 and 2.5. By the triangle inequality, Lemma 4.2, and (109), we
obtain ∣∣∣‖GPB(n, p, I1)− EBi(n, p, I1; s)‖ −

c
(1)
s+1|γs+1|

(λ q)(s+1)/2

∣∣∣
≤

∥∥∥GPB(n, p, I1)− EBi(n, p, I1; s) +
γs+1

s + 1
(I1 − I)s+1(I + p(I1 − I))n

∥∥∥
+
|γs+1|
s + 1

∣∣∣‖(I1 − I)s+1(I + p(I1 − I))n‖ − ‖ϕs+1‖1

(λ q)(s+1)/2

∣∣∣
≤ C(s)

( ν2
s+1

λs+1
+

νs+1 γ2

λ(s+3)/2
+

νs+2 + |γs+1|
λ(s+2)/2

)
≤ C(s)

νs+1

λ(s+1)/2

( νs+1

λ(s+1)/2
+

γ2

λ
+

1√
λ

)
.

From (12), it follows that γ2/λ ≤ 1, which leads to

νs+1

λ(s+1)/2
≤

(γ2

λ

)(s+1)/2
≤ γ2

λ
.

Together with the estimate above, (21) follows. The remaining inequalities are similarly
shown by using Lemma 4.2 and Propositions 3.5 and 3.4. �

Proof of Theorem 2.6. Let F ∈ S. We use the simple fact that Bi(N, p̃, F ) =
GPB(n, p̃, F ), where p̃ = (p̃1, . . . , p̃n). Hence

GPB(n, p, F )− Bi(N, p̃, F ) = W1 + W2 + W3

with

W1 = GPB(n, p, F )− EBi(n, p, F ; 2), W2 = EBi(n, p, F ; 2)− EBi(n, p̃, F ; 2),
W3 = EBi(n, p̃, F ; 2)−GPB(n, p̃, F ).

Using (16), we get |W1| ≤ ν3/λ3 and |W3| ≤ ν̃3/λ3. The norm estimate |W2| ≤ |ν2 − ν̃2|/λ2

can be estimated by similar arguments as in the proof of Lemma 4.1. �

Proof of Theorem 2.7. The assertions easily follow from the first bound in (38) with
r = 1−

√
θ, (34), (91), (45), and (46). Indeed, for F ∈ F , it can be used that

GPB(n, p, F )− exp{λ(F − I)} = (F − I)2 exp{rλ(F − I)}g(F ),

where g is defined as in Lemma 3.2. �
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