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Abstract

The Markov binomial distribution is approximated by the Poisson distribution with

the same mean, by a translated Poisson distribution and by two-parametric Poisson type

signed measures. Using an adaptation of Le Cam’s operator technique, estimates of

accuracy are proved for the total variation, local, and Wasserstein norms. In a special

case, asymptotically sharp constants are obtained. For some auxiliary results, we used

Stein’s method.
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1 Introduction

The Markov binomial distribution plays an important role in probability theory. Frequently,

it is approximated by the compound Poisson distribution, see, for example, [9, 10, 14, 18,

21, 30, 32, 33] and the references therein. For papers dealing with related problems, see, for

example, [7, 12, 17, 31, 35]. On the other hand, Poisson approximation of the non-stationary

Markov binomial distribution was not thoroughly investigated, see [29] and [9].

The purpose of this paper is the estimation of accuracy of Poisson approximation and

various two-parametric Poisson type approximations to the Markov binomial distribution.

In particular, we consider a second-order Poisson asymptotic expansion, a translated Poisson

distribution and a signed compound Poisson measure. Note that, to some extent, the last

two can be viewed as lattice counterparts of the normal distribution. Though we usually

assume that certain transition probabilities are small, we allow them to be constants, thus
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including the case which is usually associated with the normal approximation. The estimates

are obtained in the total variation, local, and Wasserstein norms. In a special case, we derive

asymptotically sharp constants. The proofs are based on an adaptation of Le Cam’s operator

technique. For some auxiliary results, we used Stein’s method.

We need the following notation. Let Ik denote the distribution concentrated at an integer

k ∈ Z and set I = I0. Throughout this paper, we use the abbreviation

U = I1 − I. (1)

In what follows, let V and W be two finite signed measures on Z. Products and powers of

V , W are understood in the convolution sense, i.e. V W{A} =
∑∞

k=−∞ V {A− k}W{k} for

a set A ⊆ Z; further W 0 = I. Here and henceforth, we write W{k} for W{{k}}, (k ∈ Z).

The total variation norm, the local norm, and the Wasserstein norm of W are denoted by

‖W‖ =
∞∑

k=−∞
|W{k}|, ‖W‖∞ = sup

k∈Z
|W{k}|, ‖W‖Wass =

∞∑

k=−∞
|W{(−∞, k]}|,

respectively. Using the simple equality

‖UW‖Wass = ‖W‖, (2)

it is possible to switch from the Wasserstein norm to the total variation norm. The logarithm

and exponential of W are given by

ln(I + W ) =
∞∑

k=1

(−1)k+1

k
W k (if ‖W‖ < 1), eW = exp{W} =

∞∑

k=0

1
k!

W k.

In particular, Pois(λ) = eλU is the Poisson distribution with parameter λ ∈ [0,∞). Note

that

‖V W‖∞ 6 ‖V ‖‖W‖∞, ‖V W‖ 6 ‖V ‖‖W‖, ‖eW ‖ 6 e‖W‖.

Let Ŵ (t) (t ∈ R) be the Fourier transform of W . We denote by C positive absolute constants.

The letter Θ stands for any finite signed measure on Z satisfying ‖Θ‖ 6 1. The values

of C and Θ can vary from line to line, or even within the same line. For x ∈ R and

k ∈ N = {1, 2, 3, . . . }, we set
(

x

k

)
=

1
k!

x(x− 1) . . . (x− k + 1),
(

x

0

)
= 1.

Let ξ0, ξ1, . . . , ξn, . . . be a Markov chain with the initial distribution

P(ξ0 = 1) = p0, P(ξ0 = 0) = 1− p0, p0 ∈ [0, 1]

and transition probabilities

P(ξi = 1 | ξi−1 = 1) = p, P(ξi = 0 | ξi−1 = 1) = q,

P(ξi = 1 | ξi−1 = 0) = q, P(ξi = 0 | ξi−1 = 0) = p,

p + q = q + p = 1, p, q ∈ (0, 1), i ∈ N.
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The distribution of Sn = ξ1 + · · · + ξn (n ∈ N) is called the Markov binomial distribution.

We denote it by Fn, that is P(Sn = m) = Fn{m} for m ∈ Z+ = N ∪ {0}. We should note

that the definition of the Markov binomial distribution slightly varies from paper to paper,

see [14, 29, 32]. Sometimes ξ0 is added to Sn or stationarity of the chain is assumed. For

example, Dobrushin [14] assumed that p0 = 1 and considered Sn−1 + 1. However, if p = q,

then Dobrushin’s Markov binomial distribution becomes a binomial distribution shifted by

unity. This is not very natural, since we want the Markov binomial distribution to be a

generalization of the binomial one. Therefore, we use the definition above which contains

the binomial distribution as a special case. Moreover, it obviously allows the rewriting of

our results for Sn−1 + 1.

Further on, we need various characteristics of Sn. Let

ν1 =
q

q + q
, ν2 =

2qq (p− q)
(q + q)3

, ν3 = 6(q − p)
qq (q + q(q − p))

(q + q)5
,

A0 =
|2qp− 3qq − q2|

2(q + q)2
, A1 =

(q − p)(ν1 − p0)
(q + q)

,

A2 =
q − p

(q + q)2
( ν1q

q + q
+ (ν1 − p0)(p− 2ν1)

)
.

Note that q + q > 0. From Lemma 4.4 below, it follows that

ESn = nν1 + A1 −A1(p− q)n,

VarSn = n(ν2 + ν1 − ν2
1) + A1 −A2

1 + 2A2

+ (p− q)n
[
2nA1

q − q

q + q
+ A2

1(2− (p− q)n)−A1 − 2A2

]
.

2 Known results

It is known that a suitably normalized binomial distribution can have only two non-degenerate

limit laws – the normal and the Poisson one. In contrast, Sn has seven different limit laws,

see [14, Table 1]. However, as already noted above, the compound Poisson approximation

dominates the field of research. Such a limit occurs, for example, when nq → λ ∈ (0,∞)

and p → b ∈ (0, 1). Consequently, we cannot expect that Poisson approximation is good for

q ¿ p. However, if p and q are of similar magnitude, we show that Poisson approximation

can be sufficiently accurate, see Theorem 3.1 below.

The Markov binomial distribution is a generalization of the binomial one. Let us therefore

recall the classical Poisson approximation bound for the binomial distribution. Let p̃ ∈ (0, 1].

Then

‖((1− p̃)I + p̃I1)n − Pois(np̃)‖ 6 2p̃ min(1, np̃) = 2np̃2 min
(
1,

1
np̃

)
, (3)

see [4, formula (1.23), p. 8]. Speaking in terms of Barbour et al. [4, Introduction], the factor

(np̃)−1 is the ’magic factor’. In fact, it often implies satisfactory accuracy but is difficult to
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obtain. It should be mentioned that the estimate 2np̃2 is principally due to Khintchine [20]

and Doeblin [15] (see also [23, p. 1183]), whereas the bound 2p̃ can be called the Prokhorov

type bound, since Prokhorov [24] was the first to get the estimate Cp̃.

Estimates similar to (3) also hold for the Markov binomial distribution. Let us consider

the stationary Markov chain, that is, let p0 = ν1. Then, as follows from the more general

result [4, Theorem 8.H and Example 8.5.4], we have

‖Fn − Pois(ESn)‖ 6 2
q + q

(1− e−nν1)
(
q +

2q|p− q|
1− |p− q|

)
. (4)

The right-hand side of (4) is of the order O((p + q)min(1, nq)), if p and q are bounded away

from unity. Consequently, if p is close to q, then the estimate (4) is a direct analogue of (3).

However, the stationarity of the chain means that p0 = ν1. In this paper, we investigate the

case when p0 is arbitrary.

Čekanavičius and Mikalauskas [9, Theorem 3.2] obtained an estimate which holds for any

p0 ∈ [0, 1] and which contains a magic factor. If the condition

p 6 1
20

, ν1 6 1
30

(5)

is satisfied, then

‖Fn − Pois(nν1)‖ 6 C (p + q)min(1, nq) + C |p− q|min
(
1,

1√
nq

)
. (6)

In principle, here, the condition (5) can be dropped, since otherwise the right-hand side

of (6) becomes greater than some absolute constant, whereas the left-hand side is in any

case bounded by 2. On the other hand, for the results below, (5) is also assumed, where it is

unclear whether it is superfluous. Note that, though condition (5) requires the smallness of

p and q, it allows for both parameters to be constants. In [8, Corollary 3] it was shown that,

for p0 = 1, nq > 1 and (p+q)2 6 |p−q| the estimate (6) is of the right order. Estimate (6) is

uniform over p0 in a sense, that the right-hand side of (6) does not depend on p0. However,

this means that, for some values of p0, the estimate (6) can be too rough. Indeed, let us

consider the stationary case and p = O(n−1/2) and q = O(n−2). Then (4) and (6) are of the

order O(n−3/2) and O(n−1/2), respectively.

To the best of our knowledge, the second-order Poisson approximation to the Markov

binomial distribution was not considered previously. In contrast, two-parametric signed com-

pound Poisson measures were used. It should be mentioned that, for sums of independent

random variables, such approximations of general order were investigated in numerous pa-

pers, see, for example, [2, 22, 28], and the references therein. In the present context, there

is a result of Čekanavičius and Mikalauskas [9, formula (3.7)], which tells us that, if (5) is

satisfied, then
∥∥∥Fn−exp

{
nν1U +n

ν2 − ν2
1

2
U2

}∥∥∥ 6 C (p+q)2 min
(
nq,

1√
nq

)
+C |p−q|min

(
1,

1√
nq

)
. (7)
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In contrast to (6), the bound in (7) can be small if n is large without supposing the smallness

of p and q. On the other hand, the approximation in (7) is not a distribution but a signed

measure, which might be less preferable in applications, see, for example, the discussion in

[6, p. 1375].

There are other two-parametric Poisson type approximations, which differ from the sec-

ond order asymptotic expansion and signed compound Poisson measure. Kruopis [22] pro-

posed to use a suitably translated Poisson distribution. Such translated approximations

are comparable to the normal distribution and can be accurate, when the standard Poisson

approximation fails, see [2, 11, 25].

The choice of parameters for the translated Poisson approximating distribution is de-

termined by the following considerations. Let us take the normal characteristic function

exp{µit − σ2t2/2} and replace −t2/2 by eit − 1 − it. We get the characteristic function

exp{µit+σ2(eit−1− it)} = exp{(µ−σ2)it+σ2(eit−1)} of a translated Poisson distribution.

However, in view of the norms used in this paper, we need approximations concentrated on

integers. Therefore, we translate the Poisson distribution by an integer quantity and add

some fractional part to the Poisson parameter for compensation. For µ ∈ R and σ ∈ [0,∞),

set

TPois(µ, σ) = Ibµ−σ2c Pois(σ2 + δ).

Here bµ− σ2c and δ denote the integer and fractional parts of µ− σ2, respectively, i.e.

µ− σ2 = bµ− σ2c+ δ, δ ∈ [0, 1), bµ− σ2c ∈ Z. (8)

As an example of translated Poisson approximation to the binomial distribution, we formu-

late an analogue of Theorem 2 from [22] for the total variation norm. Let p̃ ∈ (0, 1/2] and

np̃ > 1. Then

‖((1− p̃)I + p̃I1)n − TPois(np̃,
√

np̃(1− p̃))‖ 6 C
( p̃√

np̃
+

1
np̃

)
, (9)

see [2, Corollary 3.2 and discussion thereafter]. Note that recently Barbour and Lindvall [5]

applied the translated Poisson approximation to Markov chains. However, for the Markov

binomial distribution, their results apparently do not allow explicit estimates in terms of p

and q. It should be noted that Goldstein and Xia [19] introduced a new family of discrete

distributions which includes translated Poisson distribution as a special case. It was shown

that the members of the family can be used for approximation of the distribution of the sum

of independent integer-valued random variables in total variation.

3 Results

The main goal of this paper is to investigate various second-order Poisson type approxima-

tions to the Markov binomial law containing magic factors. For this, we make use of the
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explicit structure of Fn and assume (5). For completeness of investigation we begin from a

slight improvement of (6). In (6), the parameter of the approximating Poisson distribution

was chosen as one of the parts of ESn, which grows when n →∞ and the remaining param-

eters are some absolute constants. The next result shows that Poisson approximation with

exactly the same mean can improve the accuracy.

Theorem 3.1 If (5) is satisfied, then

‖Fn − Pois(ESn)‖ 6 C
(
nq(p + q) + |p− q|(p0p + q)

)
min

(
1,

1
nq

)
, (10)

‖Fn − Pois(ESn)‖∞ 6 C
(
nq(p + q) + |p− q|(p0p + q)

)
min

(
1,

1
nq
√

nq

)
, (11)

‖Fn − Pois(ESn)‖Wass 6 C
(
nq(p + q) + |p− q|(p0p + q)

)
min

(
1,

1√
nq

)
. (12)

Note that Theorem 3.1 remains valid if Pois(ESn) is replaced by Pois(nν1 + A1), see (47)

below. For the stationary case, estimate (10) is of the order O((p + q)min(1, nq)). This is

the same order of accuracy as in (4). It can be seen that, in view of the bounds, stationary

and non-stationary cases can be different for small values of q only. Meanwhile, for the case

nq > 1, both estimates are of the order O(p + q). We note that, if nq > 1 then in (10) the

assumption (5) can be dropped. Indeed, if (5) is not valid, then p + q is greater than some

absolute constant, meanwhile the left-hand side of (10) is always less or equal to 2.

Due to the method of proof, the absolute constants in Theorem 3.1 are not given explicitly.

However, in a special case, we can calculate asymptotically sharp constants.

Theorem 3.2 Let condition (5) be satisfied and let nq > 1. Then

∣∣∣‖Fn − Pois(ESn)‖ − 4A0√
2πe

∣∣∣ 6 C (p + q)
(
p + q +

1√
nq

)
, (13)

∣∣∣‖Fn − Pois(ESn)‖∞ − A0√
2πnν1

∣∣∣ 6 C
p + q√

nq

(
p + q +

1√
nq

)
, (14)

∣∣∣‖Fn − Pois(ESn)‖Wass −
2A0

√
nν1√

2π

∣∣∣ 6 C (p + q)
√

nq
(
p + q +

1√
nq

)
. (15)

As a consequence of (13), we note that, if p + q = O(|2p − 3q|), p → 0, q → 0, and

nq → ∞, then ‖Fn − Pois(ESn)‖ ∼ 2|2p − 3q|/√2πe. If, in addition p = q, we have

a Poisson approximation of the binomial distribution and (13) principally coincides with a

result obtained by Prokhorov [24, Theorem 2]. The same applies for the local and Wasserstein

norms, see, for example, [26, formula (32) and discussion thereafter].

The remaining results are devoted to two-parametric approximations. Here we expect

better upper bounds, since, in contrast to the simpler Poisson approximation, we can match

mean and variance of Fn. We begin with the second-order Poisson approximation. Recall

that U is defined in (1). Let M0 = 2−1(VarSn − ESn)U2.
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Theorem 3.3 If (5) is satisfied, then

‖Fn − Pois(ESn)(I + M0)‖
6 C (p + q)

(
nq(p + q) + |p− q|(p0p + q)

)
min

(
1,

1
nq

)
, (16)

‖Fn − Pois(ESn)(I + M0)‖∞
6 C (p + q)

(
nq(p + q) + |p− q|(p0p + q)

)
min

(
1,

1
nq
√

nq

)
, (17)

‖Fn − Pois(ESn)(I + M0)‖Wass

6 C (p + q)
(
nq(p + q) + |p− q|(p0p + q)

)
min

(
1,

1√
nq

)
. (18)

Note that, in the case n > 2, Theorem 3.3 also holds, if we replace Pois(ESn) by Pois(nν1 +

A1) and M0 by M̃0 = 2−1
(
n(ν2 − ν2

1)−A2
1 + 2A2

)
U2, see (47) below.

Now, let us consider the translated Poisson approximation. Though it is possible to use

ESn and VarSn as parameters, for simplicity, we shall drop the parts of the moments which

are, at least, exponentially vanishing. Therefore, let

µ = nν1 + A1, σ2 = n(ν2 + ν1 − ν2
1) + A1 −A2

1 + 2A2. (19)

As shown in the following theorem, the translated Poisson approximation gives a bound

similar to that of (9).

Theorem 3.4 Let condition (5) be satisfied and let nq > 1. Then

‖Fn − TPois(µ, σ)‖ 6 C√
nq

(
p + q +

1√
nq

)
, (20)

‖Fn − TPois(µ, σ)‖∞ 6 C

nq

(
p + q +

1√
nq

)
, (21)

‖Fn − TPois(µ, σ)‖Wass 6 C
(
p + q +

1√
nq

)
. (22)

If q is an absolute constant, then the estimate (20) is of order O(n−1/2), which, in this case,

is impossible for non-shifted Poisson approximation, see (10) and (16). If p = q, then, up to

constants, (20) coincides with (9).

Finally, we formulate a result for the signed compound Poisson measure. Let µ and σ2

be defined as in (19) and set

SPois(µ, σ) = exp
{

µU +
σ2 − µ

2
U2

}
.

Theorem 3.5 Let condition (5) be satisfied and let n > 2. Then

‖Fn − SPois(µ, σ)‖ 6 C (p + q)
(
nq(p + q) + |p− q|(p0p + q)

)
min

(
1,

1
nq
√

nq

)
, (23)

‖Fn − SPois(µ, σ)‖∞ 6 C (p + q)
(
nq(p + q) + |p− q|(p0p + q)

)
min

(
1,

1
(nq)2

)
, (24)

‖Fn − SPois(µ, σ)‖Wass 6 C (p + q)
(
nq(p + q) + |p− q|(p0p + q)

)
min

(
1,

1
nq

)
. (25)
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We note that direct calculations show that, for n = 1, (23)–(25) remain valid, if the right-

hand sides are replaced by the larger value C((p+q)3 +(p−q)2). It can be seen that, for the

case nq > 1, the upper bound in (23) has an additional multiplier (nq)−1/2 in comparison

with (16), which means an essential improvement in accuracy of approximation. Moreover,

SPois(µ, σ) is more accurate than the signed approximation used in (7). Indeed, in the

stationary case p0 = ν1, if p = O(n−1/2) and q = O(n−2), then the upper bounds in (23)

and (7) are of order O(n−2) and O(n−1/2), respectively. Finally, it is easy to check that, if

p = o(1), q = o(1), and nq > 1, then SPois(µ, σ) is more accurate than TPois(µ, σ). The

main advantage of TPois(µ, σ) over SPois(µ, σ) is the fact that it is a distribution and is

simpler structured.

4 Auxiliary results

In the following two lemmas, C(k) denotes an absolute positive constant depending on k.

Lemma 4.1 Let t ∈ (0,∞) and k ∈ Z+. Then we have

‖U2etU‖ 6 3
te

, ‖UketU‖ 6
(2k

te

)k/2
, ‖UketU‖∞ 6 C(k)

t(k+1)/2
.

The first inequality was proved in [27, Lemma 3]. The second bound follows from formula

(3.8) in [13] and the properties of the total variation norm. Here and throughout this paper,

we set 00 = 1. The third relation is a simple consequence of the formula of inversion. Our

asymptotically sharp results require the following lemma. Set

ϕ0(x) =
1√
2π

e−x2/2, ϕk(x) =
dk

dxk
ϕ0(x) (k ∈ N, x ∈ R),

‖ϕk‖1 =
∫

R
|ϕk(x)|dx, ‖ϕk‖∞ = sup

x∈R
|ϕk(x)| (k ∈ Z+).

Lemma 4.2 Let t ∈ (0,∞) and k ∈ Z+. Then we have

∣∣∣‖UketU‖ − ‖ϕk‖1

tk/2

∣∣∣ 6 C(k)
t(k+1)/2

,

∣∣∣‖UketU‖∞ − ‖ϕk‖∞
t(k+1)/2

∣∣∣ 6 C(k)
tk/2+1

,

∣∣∣‖UketU‖Wass − ‖ϕk−1‖1

t(k−1)/2

∣∣∣ 6 C(k)
tk/2

(k 6= 0).

The proof trivially follows from the more general Proposition 4 of [26] together with (2).

The next lemma is devoted to some properties of the characteristic function of Fn.

Lemma 4.3 Let (5) be satisfied. Then

F̂n(t) = Λ̂n
1 (t) Ŵ1(t) + Λ̂n

2 (t) Ŵ2(t), (26)
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where

Λ̂1,2(t) =
peit + p± D̂1/2(t)

2
, (27)

Ŵ1,2(t) =
p0

2

(
1± q + q + p(eit − 1)

D̂1/2(t)

)
+

1− p0

2

(
1± q + q + (2q − p)(eit − 1)

D̂1/2(t)

)
, (28)

D̂(t) = (peit + p)2 + 4eit(q − p)

= (1 + q + 2ν1(eit − 1)− peit)2
(
1 +

4ν1(p− ν1)(eit − 1)2

(1 + q + 2ν1(eit − 1)− peit)2
)
. (29)

Here, for Λ̂1 and Ŵ1, we use the sign ’+’, and, for Λ̂2 and Ŵ2, the sign ’−’.

Proof. Expression (26) was already used in [9]. However, the comment on its derivation

was very short. Therefore, for the sake of completeness, we give a more detailed explanation

on how (26)–(29) are obtained. Using the standard matrix product, we obtain

F̂n(t) = (p0, 1− p0) P̃n(t)
(

1

1

)
, P̃ (t) =

(
peit q

qeit p

)
,

see [16] or, for example, [34]. Now, we can apply the standard spectral decomposition of

matrices. Under condition (5), we have two different eigenvalues Λ̂1,2(t) of P̃ (t). In fact, for

j = 1, 2,

P̃ (t) ~xj = Λ̂j(t) ~xj , ~yT
j P̃ (t) = Λ̂j(t) ~yT

j , ~yT
j ~xj = 1,

where T stands for transposition and

~xT
j = (xj1, xj2) = (q(Λ̂j(t)− p), qqeit),

~yT
j = (yj1, yj2) =

( Λ̂j(t)− p

q2qeit + q(Λ̂j(t)− p)2
,

1

qqeit + (Λ̂j(t)− p)2

)
.

It is now easy to check that P̃n(t) = Λ̂n
1 (t) ~x1 ~yT

1 + Λ̂n
2 (t) ~x2 ~yT

2 and

Ŵj(t) = p0xj1(yj1 + yj2) + (1− p0)xj2(yj1 + yj2)

= p0
(Λ̂j(t)− p)(Λ̂j(t)− p + q)

qqeit + (Λ̂j(t)− p)2
+ (1− p0)

qeit(Λ̂j(t)− p + q)

qqeit + (Λ̂j(t)− p)2
.

The proof is easily completed. ¤
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Due to Lemma 4.3, Fn can be decomposed into several signed measures. Let condition (5)

be satisfied. Then Fn = Λn
1W1 + Λn

2W2, where

W1,2 =
1
2

{
I ± [(q + q)I + pU ]H

∞∑

j=0

(−1/2
j

)
Lj

}
± (1− p0)(q − p)UH

∞∑

j=0

(−1/2
j

)
Lj ,

Λ1 = I + ν1U + ν1(p− ν1)U2H + 8ν2
1(p− ν1)2U4BH4

∞∑

j=2

(
1/2
j

)
Lj−2,

Λ2 = (ν1 − q)I + (p− ν1)I1 − 2ν1(p− ν1)U2H
∞∑

j=1

(
1/2
j

)
Lj−1,

H =
1

q + q

∞∑

j=0

(p− 2ν1

q + q

)j
U j =

1
1 + q − 2ν1

∞∑

j=0

( p− 2ν1

1 + q − 2ν1

)j
Ij ,

B = (1 + q)I + 2ν1U − pI1, L = 4ν1(p− ν1)U2H2.

The following lemma is the main tool in the proofs.

Lemma 4.4 Let condition (5) be satisfied. Then

Λ1 = I + ν1U + ν2U
2Θ, (30)

Λ1 = I + ν1U +
ν2

2
U2 +

ν3

6
U3 + C q|p− q|(p + q)2U4Θ, (31)

ln Λ1 = ν1U +
ν2 − ν2

1

2
U2 +

ν3 − 3ν1ν2 + 2ν3
1

6
U3 + C q(p + q)3U4Θ, (32)

Λ2 = 2|p− q|Θ, Λn
2 = C(b) |p− q|be−C(b)nΘ (if n > b > 0), (33)

W1 = I + A1U + A2U
2 + C (p + q)|p− q|(p0p + q)U3Θ, W1 = I +

1
2
Θ, (34)

lnW1 = A1U +
2A2 −A2

1

2
U2 + C (p + q)|p− q|(p0p + q)U3Θ, (35)

W2 = C |p− q|(q + |ν1 − p0|)UΘ. (36)

For any finite signed measure W on Z and any t ∈ (0,∞), we have

‖W et ln Λ1‖ 6 C ‖W e0.1tν1U‖. (37)

Estimate (37) also holds if the total variation norm on both sides is replaced by the local one.

Proof. Some of the estimates improve the ones obtained in [9]. Condition (5) implies that

|p− ν1| 6 1
20

, |p− 2ν1| 6 1
15

,
1

q + q
6 20

19
, q 6 1

29
. (38)

Using straight forward calculus, it is shown that

‖H‖ 6 1
1 + q − 2ν1

∞∑

j=0

( |p− 2ν1|
1 + q − 2ν1

)j
6 15

13
, H =

1
q + q

I + 0.172Θ, (39)

‖U‖ = 2, ‖L‖ 6 0.04, ‖B‖ = 1 + q − 2ν1 + |2ν1 − p| 6 1 + |2ν1 − p| 6 16
15

(40)
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and

H =
1

q + q
I +

p− 2ν1

(q + q)2
U +

(p− 2ν1)2

(q + q)3
U2 + C(p + q)3U3Θ. (41)

Taking into account (38), (39), (40) and (41) it is easy to obtain (30), (31), (33) and the

second equality of (34). For example, the proof of (30) follows from

Λ1 = I + ν1U + ν1U
2
(
(p− ν1)H + 8ν1(p− ν1)2U2BH4

∞∑

j=2

(
1/2
j

)
Lj−2

)

= I + ν1U + ν1U
2

(
1
20
· 15
13

+
8
30
· 4
202

· 16
15
·
(15

13

)4
· 1
2

∞∑

j=2

0.04j−2

)
Θ.

For the first expansion in (34) note that

∞∑

j=0

(−1/2
j

)
Lj = I − 1

2
L + Cq2|p− q|2U4Θ = I + Cq|p− q|U2Θ.

Consequently,

W1 =
1
2
I +

1
2
(q + q)H − 1

4
(q + q)HL +

1
2
pUH

+(1− p0)(q − p)UH + Cq|p− q|(p + q)U3Θ.

Moreover,

1
2
(q + q)H +

1
2
[p + 2(1− p0)(q − p)]UH

=
1
2
I +

1
2

(
I +

p + 2(1− p0)(q − p)
p− 2ν1

) ∞∑

j=1

(p− 2ν1

q + q

)j
U j

=
1
2
I +

(p0 − ν1)(p− q)
p− 2ν1

∞∑

j=1

(p− 2ν1

q + q

)j
U j =

1
2
I + (p0 − ν1)(p− q)UH.

Now for (34) it suffices to use (41). The estimate (36) follows from (34) and relation W1 +

W2 = I. Taking into account (30), we get

Λ1 − I =
3
2
ν1UΘ = 3ν1Θ =

1
10

Θ

and hence ∞∑

j=4

(−1)j+1

j
(Λ1 − I)j =

(3
2

)4
∞∑

j=4

( 1
10

)j−4
ν4
1U4Θ = C q4U4Θ.

The proof of (32) now follows from the definition of ln Λ1 and (31). The proof of (35), is very

similar to the proof of (32) and is, therefore, omitted. Estimate (37) is shown by applying

ln Λ1 = Λ1 − I + (Λ1 − I)2
∞∑

j=2

(−1)j+1

j
(Λ1 − I)j−2

= ν1U +
ν1

4
U2Θ +

32

22

∞∑

j=2

1
j

(
1
10

)j−2

ν2
1U2Θ = ν1U +

7
24

ν1U
2Θ.
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In fact, this gives

‖W et lnΛ1‖ 6
∥∥∥ exp

{
0.9tν1U +

7
24

tν1U
2Θ

}∥∥∥‖W e0.1tν1U‖.

In view of Lemma 4.1, we see that

∥∥∥ exp
{

0.9tν1U +
7
24

tν1U
2Θ

}∥∥∥ 6 1 +
∞∑

r=1

1
r!

∥∥∥ 7
24

tν1U
2 exp

{0.9tν1

r
U

}∥∥∥
r

6 1 +
∞∑

r=1

er

rr
√

2πr

( 21r

24 · 0.9e

)r
6 C, (42)

which implies (37). The proof is completed. ¤

Note that Lemma 4.4 immediately leads to shorter expressions for Λ1 and W1, e.g.

Λ1 = I + ν1U +
ν2

2
U2 + C (p + q)q|p− q|U3Θ.

Further, in the presence of condition (5), we can use Lemma 4.4 to expand F̂n(t) in powers

of (it), which leads to the exact expressions of ESn and VarSn as given in the introduction.

However, it is easily seen that these formulas remain valid, if condition (5) is dropped.

The next results are needed for the estimation of the closeness of TPois(µ, σ) and

SPois(µ, σ). We use Stein’s method for the proof. In the remaining part of this section,

we assume that condition (5) is satisfied and nq > 1. Further, let µ and σ be defined as

in (19), a = bµ− σ2c, and let δ be the fractional part of µ− σ2, see (8). It is not difficult to

check that

nν1 > 1
2
, |A1| 6 1

19
, |A2| 6 |p− q|

(q + q)3
(3q + 2q|p− q|) 6 20

192
(3ν1 + 2|p− q|) 6 4

192
,

and hence

µ > nν1 − |A1| > nq

4
, σ2 > µ− |σ2 − µ| > 3

4
µ > nq

6
,

since

|σ2 − µ| 6 n|ν2 − ν2
1 |+ A2

1 + 2|A2| 6 µ
nν1

µ

( |ν2|
ν1

+ ν1 +
A2

1 + 2|A2|
nν1

)
6 µ

4
. (43)

Let g : Z→ R be a bounded function and set

∆g(j) = g(j + 1)− g(j) (j ∈ Z), ‖g‖∞ = sup
j∈Z

|g(j)|, ‖g‖ =
∑

j∈Z
|g(j)|.

Further, let

λ1 = 2µ− σ2, λ2 =
σ2 − µ

2
, SP(g) =

∑

j∈Z
g(j)SPois(µ, σ){j},

(Ag)(j) = 2λ2g(j + 2) + λ1g(j + 1)− jg(j), j ∈ Z.
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Lemma 4.5 Let f : Z→ R satisfy one of the following conditions: ‖f‖∞ 6 1, ‖f‖ 6 1, or

‖∆f‖∞ 6 1. Then there exists a bounded function g : Z→ R such that, for j ∈ Z,

g(j) = 0 (j 6 0), (Ag)(j) = f(j)− SP(f) (j > 0).

Moreover, if ‖f‖∞ 6 1, then ‖∆g‖∞ 6 Cµ−1. If ‖f‖ 6 1, then ‖∆g‖ 6 Cµ−1. If ‖∆f‖∞ 6
1, then ‖∆g‖∞ 6 Cµ−1/2.

Proof. Due to (43), we have

γ :=
4|λ2|

2λ2 + λ1
=

2|σ2 − µ|
µ

6 1
2
.

Now, the statement of the lemma follows from Theorem 2.1 and Example 3.3 in [3]. ¤

Let X be a Pois(σ2 + δ) distributed random variable and set Z = a + X. Then Z has

distribution TPois(µ, σ). Further, we have SPois(µ, σ) = exp{λ1U + λ2(I2 − I)}.
Lemma 4.6 Let f and g be defined as in Lemma 4.5. If, for some ε1 = ε1(n, p, q, p0) > 0,

|E(Ag)(Z)| 6 ε1‖∆g‖∞, then

‖TPois(µ, σ)− SPois(µ, σ)‖ 6 C (ε1µ
−1 + e−Cnq),

‖TPois(µ, σ)− SPois(µ, σ)‖Wass 6 C (ε1µ
−1/2 + e−Cnq).

If, for some ε2 = ε2(n, p, q, p0) > 0, |E(Ag)(Z)| 6 ε2‖∆g‖, then

‖TPois(µ, σ)− SPois(µ, σ)‖∞ 6 C (ε2µ
−1 + e−Cnq).

Proof. If a > 0, then we have |Ef(Z) − SP(f)| = |E(Ag)(Z)|, and the statement of

Lemma 4.6 follows directly from the definition of the norms, see, for example, [4, Appendix

A1]. Now, let a < 0. Applying (43) and Bernstein’s inequality (see [1, Theorem 1.4.1 and

comment on p. 37]), we obtain

P(Z 6 0) = P(X − EX 6 −µ) 6 exp
{
− µ2

4(σ2 + δ)

}
6 e−µ/14 6 e−Cnq. (44)

Let Z̃ be a random variable on Z+ with P(Z̃ = 0) = P(Z 6 0) and P(Z̃ = j) = P(Z = j)

for j ∈ N. Without loss of generality, we can assume that f(j) = 0 for j < a. Due to the

assumption made on f , for j > a, we then have |f(j)| 6 j + |a|+ 1. Now, we obtain

|Ef(Z)− Ef(Z̃)| 6
−1∑

j=a

|f(j)|P(Z = j) + |f(0)|P(Z < 0)

6 C |a|P(Z 6 0) 6 C nqe−Cnq 6 C e−Cnq (45)

and

|Ef(Z̃)− SP(f)| =
∣∣∣
∞∑

j=0

(
f(j)− SP(f)

)
P(Z̃ = j)

∣∣∣ =
∣∣∣
∞∑

j=0

(Ag)(j)P(Z̃ = j)
∣∣∣

6 |E(Ag)(Z)|+ |(Ag)(0)|P(Z 6 0) +
∣∣∣

0∑

j=a

(Ag)(j)P(Z = j)
∣∣∣

6 |E(Ag)(Z)|+ C (|(Ag)(0)|+ |(Ag)(−1)|)P(Z 6 0). (46)
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Taking into account Lemma 4.5, we obtain

|(Ag)(0)| 6 (λ1 + 2|λ2|)|∆g(0)|+ 2|λ2||∆g(1)| 6 C µ‖∆g‖∞ 6 C nq.

Similarly, |(Ag)(−1)| 6 C nq. Combining the last two estimates with (45), (46), and (44),

the asserted inequalities are easily proved. ¤

Lemma 4.7 Let µ and σ be given by (19), δ be as in (8), nq > 1, and let condition (5) be

satisfied. Then

‖TPois(µ, σ)− SPois(µ, σ)‖ 6 C√
nq

(
p + q +

1√
nq

)
,

‖TPois(µ, σ)− SPois(µ, σ)‖∞ 6 C

nq

(
p + q +

1√
nq

)
,

‖TPois(µ, σ)− SPois(µ, σ)‖Wass 6 C
(
p + q +

1√
nq

)
.

Proof. Taking into account that E(Z−a)g(Z) = (σ2+δ)Eg(Z+1) and applying Lemma 4.1,

we obtain

|E(Ag)(Z)| = |(σ2 − µ)E∆2g(Z)− δE∆g(Z)|
6 |σ2 − µ|‖∆g‖∞‖Ue(σ2+δ)U‖+ δ‖∆g‖∞
6 C ‖∆g‖∞

( |σ2 − µ|√
σ2 + δ

+ δ
)

6 C ‖∆g‖∞(
√

nq(p + q) + δ),

|E(Ag)(Z)| 6 ‖∆g‖
(
|σ2 − µ|‖Ue(σ2+δ)U‖∞ + δ‖e(σ2+δ)U‖∞

)

6 C ‖∆g‖
( |σ2 − µ|

σ2 + δ
+

δ√
σ2 + δ

)
6 C ‖∆g‖

(
p + q +

δ√
nq

)
.

Now it suffices to use Lemma 4.6. ¤

5 Proofs of the theorems

For the proofs of the theorems, we adapt Le Cam’s [23] operator technique, which is mainly

based on signed measures and their convolutions. Though this approach is natural for

distributions of sums of independent random variables, we nevertheless show that it can also

be applied to the Markov binomial distribution. The idea of the proofs of Theorems 3.1, 3.3,

3.5 is the following. The assumptions of this paper allow to write Fn = W1Λn
1 + W2Λn

2 . As

a rule, ‖W2Λn
2‖ is sufficiently small (for Theorem 3.3 this is true if n > 2). It remains to

approximate W1Λn
1 , which we write as an exponential measure exp{ln W1 + n lnΛ1}. Then,

taking into account the properties of exponential measures and applying Lemma 4.4, we

obtain expressions of the form ‖Uk exp{nν1U}‖. Application of Lemma 4.1 completes the

proofs. For the Wasserstein metric we use (2) whenever possible and further on work with

the total variation norm. In general, the method of this paper might be applied when all
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but one eigenvalues of the transition matrix of the characteristic function (see P̃ (t) of proof

of Lemma 4.3) are very small. Otherwise, the main problem would be to get the analogue of

Lemma 4.4. In our case, we take advantage of the explicit dependence of Λ1 on the transition

probabilities.

Proof of Theorem 3.1. The estimates are proved similarly, so we give the details of (10)

only. We have

‖Fn − Pois(ESn)‖ 6 ‖Λn
1W1 − Pois(ESn)‖+ ‖Λn

2‖‖W2‖.

Let M1 = n ln Λ1 + lnW1 and M2 = ESnU . Direct calculations show that

|A1| 6 C|p− q||p0 − ν1|, |A1|2 6 C|p− q|(p0p + q), |A2| 6 C|p− q|(p0p + q).

Applying Lemma 4.4 and the properties of the total variation norm (see Introduction), we

get

‖Λn
1W1 − Pois(ESn)‖ = ‖eM1 − eM2‖ =

∥∥∥
∫ 1

0

(
etM1+(1−t)M2

)′ dt
∥∥∥

6
∫ 1

0
‖(M1 −M2)etM1+(1−t)M2‖dt 6

∫ 1

0
‖(M1 −M2)etn lnΛ1+(1−t)M2‖ et‖ ln W1‖dt

6 C

∫ 1

0
‖(M1 −M2)e0.1tnν1U+(1−t)M2‖ et‖ ln W1‖ dt

6 C ‖(M1 −M2)e0.1nν1U‖
∫ 1

0
‖e0.9(1−t)M2‖ exp{0.1(1− t)|A1 −A1(p− q)n|‖U‖}dt

6 C ‖(n ln Λ1 − nν1U + lnW1 −A1U)e0.1nν1U‖+ C |A1(p− q)n|‖Ue0.1nν1U‖
6 C (nq(p + q) + |p− q|(p0p + q))‖U2e0.1nν1U‖+ C |p− q|2|ν1 − p0|e−Cn.

We used the fact that exp{0.9(1 − t)M2} is a distribution. Consequently ‖ exp{0.9(1 −
t)M2}‖ = 1. Similarly, ‖Ue0.1nν1U‖ 6 ‖U‖ 6 2. Moreover, ‖ ln W1‖ 6 C. Applying

Lemma 4.1, (33), and (36), we obtain

‖Fn−Pois(ESn)‖ 6 C (nq(p+q)+ |p−q|(p0p+q))min
(
1,

1
nq

)
+C |p−q|2(q+ |ν1−p0|)e−Cn,

which leads us to (10). ¤

Above, we mentioned that Theorem 3.1 remains valid, when Pois(ESn) is replaced by

Pois(nν1 + A1). This follows from the simple inequalities

‖Pois(ESn)− Pois(nν1 + A1)‖ 6 ‖U‖|ESn − (nν1 + A1)|
6 C|p− q|2|p0 − ν1|e−Cn 6 C|p− q|(p0p + q)e−Cn. (47)

Proof of Theorem 3.3. Let n = 1 and ω = p0p+(1−p0)q. Then Fn = I +ωU , ES1 = ω,

2M0 = −ω2U2 and the proof follows from the expansion

Pois(ES1)(I + M0) = I + ωU + Cω3U3Θ.
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If n > 2, the proof is similar to the previous one. Applying (36) and (33) we obtain

‖Λn
2W2‖ 6 C(p− q)2(p0p + q)e−Cn.

Similarly to the proof of (42), we obtain

‖Λn
1W1 − eM2+M0‖ 6 C ‖(M1 −M2 −M0)e0.1nν1U‖

For the proof we used the fact that

‖ exp{0.9(1− t)M2 + (1− t)M0}‖
6 C‖ exp{(1− t)0.9nν1U + 0.5(1− t)n(ν2 − ν2

1)U2}‖
6 C

∥∥∥ exp
{

0.9(1− t)nν1U +
7
24

0.9(1− t)nν1U
2Θ

}∥∥∥ 6 C. (48)

The last inequality is a consequence of (42). Similarly,
∥∥∥eM2

(
eM0 − I −M0

)∥∥∥ =
∥∥∥M2

0

∫ 1

0
eM2+tM0(1− t) dt

∥∥∥ 6 C

∫ 1

0

∥∥∥M2
0 enν1U+tM0

∥∥∥(1− t)dt

6 C
∥∥∥M2

0 e0.1nν1U
∥∥∥

∫ 1

0

∥∥∥ exp{0.9nν1U + tM0}
∥∥∥dt 6 C ‖e0.1nν1UM2

0 ‖.

The proof is completed by applying Lemmas 4.4, 4.1, and (2). The estimates for local and

Wasserstein norms are proved in the same way. ¤

If n > 2, Theorem 3.3 remains valid, when Pois(ESn) and M0 are replaced by Pois(nν1 +

A1) and M̃0, respectively. Indeed, then

‖M0 − M̃0‖ 6 Cn|p− q|n(|A1|+ |A2|)‖U2‖ 6 Cn|p− q|n+1(p0 + q)

6 Cne−Cn(p− q)2(p + q)(p0 + q) 6 Cne−Cn(p− q)2(p0p + q),

‖M0‖ 6 Cn, |ESn − nν1 −A1| 6 C|p− q|n+1(p0 + q) 6 C(p− q)2(p0p + q)e−Cn.

Now by the properties of the total variation norm

‖Pois(ESn)(I + M0)− Pois(nν1 + A1)(I + M̃0)‖
6 ‖[Pois(ESn)− Pois(nν1 + A1)](I + M0)‖+ ‖Pois(nν1 + A1)(M0 − M̃0)‖
6 C(1 + ‖M0‖)|ESn − nν1 −A1|+ C‖M0 − M̃0‖

and it suffices to use previous estimates.

Proof of Theorem 3.2. Note that

4A0√
2πe

=
n

2
|ν2 − ν2

1 |
‖ϕ2‖1

nν1
.

Therefore,
∣∣∣‖Fn − Pois(ESn)‖ − 4A0√

2πe

∣∣∣ 6
∥∥∥Fn − Pois(ESn)

(
I +

n(ν2 − ν2
1)−A2

1 + 2A2

2
U2

)∥∥∥

+
∥∥∥2A2 −A2

1

2
U2Pois(ESn)

∥∥∥ +
∥∥∥n

2
(ν2 − ν2

1)U2(Pois(ESn)− Pois(nν1))
∥∥∥

+
n

2
|ν2 − ν2

1 |
∣∣∣‖U2Pois(nν1)‖ − ‖ϕ2‖1

nν1

∣∣∣.
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Now it suffices to use Lemmas 4.2 and 4.1 and Theorem 3.3. The difference between two

Poisson distributions can be estimated via the same approach as used in the proof of Theo-

rem 3.1:

∥∥∥n

2
(ν2 − ν2

1)U2(Pois(ESn)− Pois(nν1))
∥∥∥

6 Cnq(p + q)
∥∥∥U2enν1U

∫ 1

0
(exp{(ESnU − nν1U)t})′dt

∥∥∥

6 Cnq(p + q)|p− q|
∥∥∥U3

∫ 1

0
exp{tESnU + (1− t)nν1U}dt

∥∥∥

6 Cnq(p + q)|p− q|
∥∥∥U3enν1U

∥∥∥ 6 C(p + q)|p− q|(nq)−1/2.

Estimates for other norms are obtained similarly. ¤

Proof of Theorem 3.5. Let M3 = µU + (σ2 − µ)U2/2. Taking into account the last

inequality in (48) and arguing similarly to the proof of Theorem 3.1, we obtain

‖Λn
1W1 − SPois(µ, σ)‖

6 C

∫ 1

0

∥∥∥etM1+(1−t)M3

∥∥∥dt 6 C

∫ 1

0

∥∥∥(M1 −M3)e0.1tnν1U+(1−t)M3

∥∥∥dt

6 C

∫ 1

0

∥∥∥(M1 −M3) exp{0.1tnν1U + (1− t)nν1U + 0.5(1− t)n(ν2 − ν2
1)U2}

∥∥∥dt

6 C
∥∥∥(M1 −M3)e0.1nν1U

∥∥∥
∫ 1

0
‖ exp{0.9(1− t)nν1U + 0.5(1− t)n(ν2 − ν2

1)U2}‖dt

6 C
∥∥∥(M1 −M3)e0.1nν1U

∥∥∥.

Similar estimates hold for local and Wasserstein norms. Moreover,

M1 −M3 = C (p + q)2(nq + |p− q|)U3Θ.

Now the proof of Theorem 3.5 can be completed applying Lemma 4.1. ¤

The proof of Theorem 3.4 follows from Lemma 4.7 and Theorem 3.5.
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