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Two-parametri
 
ompound binomial approximations 2binomial distribution. We show that the symmetry or suitable shifting of distributions sig-ni�
antly in
rease the a

ura
y of approximation. For the proofs, we use the properties ofthe exponentials of �nite signed measures, relations between norms, and known results on
onvolutions of symmetri
 and shifted distributions. In the latti
e 
ase, we apply the 
har-a
teristi
 fun
tion method. The results for the almost binomial approximation are derivedusing Stein's method.1.2 NotationLet R and N denote the sets of real numbers and positive integers, respe
tively. For ourpurposes, it is more 
onvenient to formulate all results in terms of distributions or signedmeasures rather than in terms of random variables. Let F (resp. S, M) denote the set ofprobability distributions (resp. symmetri
 probability distributions about zero, �nite signedmeasures) on R. The distribution 
on
entrated at a point u 2 R is denoted by Iu. Set I = I0.All produ
ts and powers of �nite signed measures are de�ned in the 
onvolution sense. ForW 2 M, set W 0 = I. Let W = W+ �W� denote the Hahn{Jordan de
omposition of W .The total variation norm, the Kolmogorov norm, and the L�evy 
on
entration seminorm ofW are de�ned by kWk = W+fRg +W�fRg;jW j = supx2R jWf(�1; x℄gj;jW jh = supx2R jWf[x; x+ h℄gj; h 2 [0; 1);respe
tively. Note that, for W 
on
entrated on integers, jW j0 is the so-
alled lo
al normof W . It is well known that, for V;W 2M, u 2 R, and h 2 [0;1), we havekVWk � kV k kWk; jV W j � jV j kWk; jV W jh � jV jh kWk;kIuV k = kV k; jIuV j = jV j; jIuV jh = jV jh; jW j � kWk; jW jh � kWk:Note that, if WfRg = 0, then, as is easily seen, maxfjW j; jW jhg � 2�1kWk. The totalvariation distan
e between V;W 2 M with the same total mass V fRg = WfRg 
an beevaluated in terms of the total variation norm, i.e.,dTV(V; W ) := supA j(V �W )fAgj = 12kV �Wk: (1)



Two-parametri
 
ompound binomial approximations 3The supremum in (1) is taken over all Borel sets A � R. The exponential of W 2 M isde�ned by the �nite signed measureexpfWg = 1Xm=0 Wmm! :We denote by C positive absolute 
onstants that may di�er from line to line. Similarly, byC(�) we denote positive 
onstants depending on the indi
ated argument only. Letn 2 N; pj 2 [0; 1℄; qj = 1� pj ; (j 2 f1; : : : ; ng);pmax = max1�j�n pj; pmin = min1�j�n pj; p = (p1; : : : ; pn);�k = nXj=1 pkj ; (k 2 N); � = �1; ! = �2� ; ~N = �2�2 ; (2)N = �2�2 � Æ; N 2 N; jÆj � 12 ; ~p = �N = !1� Æ!=�; ~q = 1� ~p; (3)GPB(n; p; F ) = nYj=1(qjI + pjF ); Bi(N; ~p; F ) = (~qI + ~pF )N ; (F 2 F):We always assume that ~p � 1. Note that Bi(N; ~p; I1) and GPB(n; p; I1) are the binomialand Poisson binomial distributions, respe
tively. Let S denote a random variable withdistribution GPB(n; p; I1).The main goal of this paper is to give bounds for the a

ura
y of approximation ofthe generalized Poisson binomial distribution GPB(n; p; F ), (F 2 F) by the 
ompoundbinomial law Bi(N; ~p; F ). Note that we are always interested in the 
ase � � 1, and oneof our main tasks is an establishment of expli
it dependen
e of the estimates on �. Byanalogy with the Poisson approximation, we 
an say that we 
on
entrate our e�orts on theobtaining the `magi
 fa
tors' ��r for some r > 0 (see Introdu
tion of [3℄).1.3 Known resultsIn general, there are two di�erent methods for 
hoosing the parameters of the approximatingbinomial distribution. The �rst one assumes the repla
ement of all pj by their mean. Forthe Poisson binomial distribution, su
h a one-parametri
 approximation was 
onsidered byEhm [9℄ and Roos [14℄. The main disadvantage of the one-parametri
 approa
h is relatedto the fa
t that only one moment of the approximated distribution 
an be mat
hed. As a
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ompound binomial approximations 4typi
al one-parametri
 result, we have���kGPB(n; p; I1)� Bi(n; p; I1)k �r 2�e ���� � C �minn1; � + 1p�(1� p)o; (4)where p = �n; � = Pnj=1(p� pj)2�(1� p) ;for a slightly stronger result, see Theorem 3 in [14℄. In Remark on p. 259 of [14℄, it is shownthat � � pmax � pmin. Therefore, in view of (4), it seems that the one-parametri
 binomialapproximation is appli
able in the 
ase where the pj are 
lose in some sense. Moreover, the
onverse holds. Indeed, from Ehm's [9℄ results it follows that the total variation norm termin the left-hand side of (4) is small if and only if � is small. In what follows, whenever wespeak of 
lose pj , we mean that � is small. An extension of the one-parametri
 approa
h tothe 
ompound binomial 
ase is given in [5℄.The se
ond approa
h is based on mat
hing the �rst two moments of the Poisson binomialand binomial distributions. Thus, we have the two-parametri
 
ase. Re
all that S denotes arandom variable with distributionGPB(n; p; I1). As an approximation, we use the binomialdistribution Bi(N; ~p; I1). Obviously, both distributions have the same mean � = N ~p. Theexa
t mat
hing of the varian
es is usually not a
hieved be
ause of the ne
essity of N 2 N.However, the di�eren
e between the varian
es is small. Indeed, sin
e !=� � 1 and jÆj � 1=2,we have ��� nXj=1 pjqj �N ~p~q��� = !2jÆj1� Æ!=� � !2 � p2max: (5)As a typi
al two-parametri
 result, we have, for 0 < ~p < 1,


GPB(n; p; I1)� Bi(N; ~p; I1)


� 2P (S � N + 1) + 2~q� !2jÆj�� Æ! + 4min�1; pep�� �2���3� � !2��: (6)Estimate (6) was obtained by �Cekanavi�
ius and Vaitkus ([7℄, Theorem 4.1) and is an im-provement of previous results of Barbour et al. ([3℄, p. 190) and Soon [16℄ if one takesinto a

ount the assumptions of this paper. Note that Soon [16℄ applied a two-parametri
binomial approximation to a mu
h more general 
ase of the sum of dependent indi
ators.Note also that, in all three papers mentioned above, the summand 2P (S � N + 1) was
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ompound binomial approximations 5overlooked. However, it is often quite small. Indeed, from Bernstein's inequality it followsthat P (S � N + 1) � expn�14��2�2 � ��o � expn��4 (1� !)o(see [1℄, Theorem 1.4.1). Therefore, as a rule, the order of a

ura
y of approximation in (6)is determined by the se
ond summand.It is easy to 
he
k that if all pj are equal, then both sides in (6) vanish. Thus, thetwo-parametri
 binomial approximation retains one of the most essential properties of theone-parametri
 approximation. Now, let us 
onsider the 
ase where the pj are not 
lose anduniformly bounded away from 0 and 1. Then the one-parametri
 binomial approximationis ina

urate, sin
e the total variation distan
e between the 
orresponding distributions islarger than some absolute 
onstant. On the other hand, if, in addition, ~p � C < 1, thenthe two-parametri
 binomial approximation is of a

ura
y Cn�1=2. In the 
ase mentioned,the 
lassi
al Berry{Esseen inequality tells us that, for the Kolmogorov norm, one 
an alsoapply the normal approximation with a

ura
y Cn�1=2. Thus, we 
on
lude that, to someextent, the two-parametri
 binomial approximation 
ombines the advantages of both theone-parametri
 binomial and normal approximations.By the properties of the total variation norm (see, for example, [12℄),


GPB(n; p; I1)� Bi(N; ~p; I1)


 = supF2F 


GPB(n; p; F )� Bi(N; ~p; F )


: (7)Consequently, if treated as a 
ompound binomial approximation, estimate (6) 
orrespondsto the worst possible 
ase. On the other hand, if F satis�es 
ertain stru
tural 
onditions,one 
an use them to a
hieve some improvements in the a

ura
y. The main purpose ofthis paper is an investigation of the 
hanges in the a

ura
y of the 
ompound binomialapproximation, when F is a symmetri
 or suitably shifted distribution.As already mentioned above, the 
hoi
e of parameters for the two-parametri
 approxi-mation Bi(N; ~p; I1) is based on mat
hing the �rst two moments. Re
all the de�nition of ~N ,!, and S. Obviously, ~N! = � and ~N!(1�!) = �� �2 
oin
ide with mean and varian
e ofS, respe
tively. However, we 
annot take ~N and ! as the binomial parameters, sin
e, due tothe de�nition of the binomial law, the parameter N must be a positive integer. Therefore,N is de�ned as an integer 
losest to ~N , and ~p is 
hosen to satisfy N ~p = �. Thompson [17℄
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ompound binomial approximations 6introdu
ed a di�erent approa
h, repla
ing the binomial approximation by an almost bino-mial approximation, whi
h depends dire
tly on ~N and !. The almost binomial distributionABi = ABi( ~N;!) is de�ned byABifkg =8<: � ~Nk �!k(1� !) ~N�k; k 2 f0; 1; : : : ; b ~N
g;1�Pb ~N
k=0 � ~Nk �!k(1� !) ~N�k; k = b ~N
+ 1:Here � ~Nk � =Qkm=1(( ~N �m+1)=m), and b ~N
 2 N denotes the integer part of ~N . One mayask whether ABi is, indeed, a probability distribution. In fa
t, it should be 
lari�ed thatABifb ~N
+ 1g � 0. But this easily follows from the identitymXk=0�xk�rk(1� r)x�k = 1� x�x� 1m �Z r0 ym(1� y)x�1�m dy; (8)whi
h holds for all m = 0; 1; 2; : : : , r 2 [0; 1), and x 2 R. In the 
ase x 2 N, this is awell-known fa
t (see [11℄, p. 110). For general x, (8) remains valid, as one 
an show bydi�erentiating the left-hand side with respe
t to r. Thompson [17, 18℄ has shown that, forA � f0; 1; : : : ; b ~N
g,jP (S 2 A)�ABifAgj � 41� !��3� � !2�+ n� b ~N
 � 1(1� !)(b ~N
+ 1)P (S � b ~N
+ 2): (9)It should be mentioned that the bound in (9) 
annot trivially be viewed as a bound fordTV(GPB(n; p; I1); ABi). Indeed, the 
onsideration of 
omplements is not suÆ
ient, sin
eGPB(n; p; I1) and ABi are 
on
entrated on f0; : : : ; ng � f0; : : : ; b ~N
+1g, respe
tively, andsin
e the set A is not allowed to 
ontain b ~N
+1. Further, estimate (9) is more 
onservativethan (6) in the sense that it is not 
omparable to the normal one whenever the pj are not
lose. However, as observed by Thompson [18℄, numeri
al experiments show that the left-hand side of (9) seems to be of order Cn�1=2. Therefore, one 
an expe
t that the right-handside might be improved (see Se
tion 2.4).Note that there are also some other approa
hes, di�erent from that of this paper (see,for example, [10℄).
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ompound binomial approximations 72 Results2.1 General distributionsIn this se
tion, we 
onsider shifted and symmetri
 distributions F 2 F . By a shifteddistribution, we mean F = IuG, where G 2 F and u 2 R. Then, minimizing the normestimate of the di�eren
e between GPB(n; p; IuG) and Bi(N; ~p; IuG) with respe
t to u,one 
an expe
t some improvement of the a

ura
y of approximation. Shifted and symmetri
distributions play an important rôle in 
ompound Poisson approximations (see, for example,[1℄ and [12℄). Note that, in the following theorem, we do not assume the �niteness of anymoments.Theorem 2.1 Let pmax � 1=4 and � � 1. Then we havesupG2F infu2R ���GPB(n; p; IuG)� Bi(N; ~p; IuG)���� C�5=6� 1�1=2 !2jÆj1� Æ!=� +��3� � !2�+ 1�3=2 nXj=1 pj jpj � !j� (10)� C�5=6 ; (11)supF2S ���GPB(n; p; F )� Bi(N; ~p; F )���� C�2� !2jÆj1� Æ!=� +��3� � !2�+ 1�2 nXj=1 pj jpj � !j� (12)� C�2 : (13)Moreover, for all F 2 S and h 2 (0;1), we have���GPB(n; p; F )� Bi(N; ~p; F )���h� C�2� !2jÆj1� Æ!=� +��3� � !2�+ 1�2 nXj=1 pjjpj � !j�Q1=9h (j lnQhj+ 1)40=3: (14)Here Qh denotes the L�evy 
on
entration fun
tionQh = Qh;�;F = ��� expn �20(F � I)o���h:Remark 2.1 (a) Estimates (11) and (13) are added for demonstration of the a

ura
ywhen pj are not 
lose. In this sense, estimates (10) and (12) are sharper than (11)
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ompound binomial approximations 8and (13), sin
e, if pj = p for all j, they are equal to zero. Note that, in 
ontrast to(10){(13), the bound in (14) depends on F .(b) The assumption pmax � 1=4 is a 
onsequen
e of the method of proof.2.2 Latti
e distributionsIt seems that, for the total variation norm, estimates of the same a

ura
y and generalityas in (10){(13) are unobtainable. However, for a latti
e distribution F with �nite se
ondmoment, some analogue of (12) holds. Moreover, in this 
ase, we obtain the estimates forthe Kolmogorov norm and 
on
entration seminorm with expli
it 
onstants.Theorem 2.2 Let pmax � 1=4 and � � 1. Let F 2 S be 
on
entrated on f�1;�2; : : :g.Then, for h 2 [0;1), we have���GPB(n; p; F )� Bi(N; ~p; F )���h � bh+ 1
�5=2 � !2jÆj1� Æ!=��0:82 + 0:87� + 3:69�2 �+ 1:62��3� � !2�+ 2:42�2 nXj=1 pj jpj � !j� (15)� C h+ 1�5=2 :If, in addition, F has �nite varian
e �2, then


GPB(n; p; F )� Bi(N; ~p; F )


 � Cp��2 � !2jÆj1� Æ!=� +��3� � !2�+ 1�2 nXj=1 pjjpj � !j� (16)� C p��2 ;���GPB(n; p; F )� Bi(N; ~p; F )��� � ��2� !2jÆj1� Æ!=��0:39 + 0:34� + 1:27�2 �+ 0:64��3� � !2�+ 0:83�2 nXj=1 pjjpj � !j� (17)� C ��2 :Remark 2.2 (a) Taking h < 1, from (15) we get an estimate for the lo
al norm, whi
his of better order than one that 
an be obtained from the more general estimate (14)(see also [5℄). It also 
ontains expli
it 
onstants.
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ompound binomial approximations 9(b) The main advantage of estimate (17), in 
omparison to (16) and (12), is its expli
it
onstants. Note that, unlike estimate (12), it 
ontains the undesirable fa
tor �, whi
h
annot be less than one. Estimate (17) is obtained by a dire
t appli
ation of Tsare-gradskii's inequality (see [19℄ or (39) below) and reveals, to some extent, the limitationsof su
h an approa
h.2.3 Asymptoti
 expansionsIn this se
tion, we introdu
e asymptoti
 expansions for the two-parametri
 
ompound bi-nomial approximation. As above, we investigate the 
ases of shifted and symmetri
 distri-butions F . However, we begin with the general 
ase F 2 F . In this se
tion, we assumethat � � 1 and pmax � 1=4, whi
h implies that 0 < ~p � 2=7 (see (46) and (47) below).As explained in the introdu
tion, we 
on
entrate ourselves on the `magi
 fa
tors.' The
onstru
tion of an asymptoti
 expansion 
an, therefore, be outlined as follows. Under theassumptions above, the a

ura
y in (6) is at least of order C��1=2. The task is to 
hoose a�nite signed measure whi
h, when added to the binomial approximation, leads to a remain-der of order C��1. The addition of the next member of the asymptoti
 expansion gives aremainder of order C��3=2, and so on.Let us begin with the simple identitynYj=1(qjI + pjF ) = (~qI + ~pF )N expn 1Xk=1(ak(F ) + bk(F ))o; F 2 F ; (18)where ak(F ) = (�1)k+1k �(!k�1 � ~pk�1)(F � I)k;bk(F ) = (�1)k+1k nXj=1 pj(pk�1j � !k�1)(F � I)k; k 2 N:Note that a1(F ), b1(F ), and b2(F ) are zero measures. In what follows, we have to expand theexponential of signed measure in some power series and then to 
olle
t the summands havingthe same order of smallness with respe
t to �. The order of smallness will be determined bythe magnitude of the total variation norm of their 
onvolution with the 
ompound binomialdistribution. The measure ak(F ) 
ontains a fa
tor whi
h is bounded by unity. Indeed,�k j!k�1 � ~pk�1j � �j! � ~pj = !2jÆj1� Æ!=� � !2 � 1;
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ompound binomial approximations 10(see (5)). Consequently, by the properties of the total variation norm (see (7)), for k 2 N,we have supF2F kak(F )(~qI + ~pF )Nk � supF2F k(F � I)k(~qI + ~pF )Nk= k(I1 � I)k(~qI + ~pI1)Nk� C(k) 1�k=2 : (19)Similarly,supF2F kbk(F )(~qI + ~pF )Nk � � supF2F k(F � I)k(~qI + ~pF )Nk � C(k) 1�(k�2)=2 : (20)The estimates for F = I1 
an be obtained, for example, by applying Lemma 4 from [14℄.As follows from (19) and (20), the estimate of the norm of the 
onvolution of ak(F ) withthe 
ompound binomial distribution is 
omparable to the similar estimate for bk+2(F ).Therefore, we use the following formal expansion in powers of x:expn 1Xk=1(ak(F ) + bk+2(F ))xko = I +A1(F )x+A2(F )x2 + : : : :Taking into a

ount (19) and (20), one 
an prove thatsupF2F 


Ak(F )(~qI + ~pF )N


 � C(k) 1�k=2 ; k 2 N: (21)Thus, as an approximation, we propose to use the �nite signed measure(~qI + ~pF )N�I + sXk=1Ak(F )�; s 2 f0; 1; : : : g: (22)Note that, by the formula of Fa�a di Bruno (see, for example, [13℄, pp. 135{136),A1(F ) = b3(F ); A2(F ) = a2(F ) + b4(F ) + 12b23(F );Ak(F ) = X� kYm=1 1lm! (am(F ) + bm+2(F ))lm ; k 2 N:HereP� means the summation over all nonnegative integer solutions l1; : : : ; lk of the equa-tion l1 + 2l2 + � � �+ klk = k.If pmin is bounded away from zero, then � � Cn, and expansion (22) 
an be writtenas a sum of signed measures, the norms of whi
h, due to (21), are bounded from above
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ompound binomial approximations 11by powers of n�1=2. For the 
ase F = I1 and the Kolmogorov norm, a similar result
an be obtained by the Edgeworth expansion, whi
h 
on�rms the already noted similaritybetween the two-parametri
 binomial approximation and the normal one. Remarkably, (22)has 
ertain advantages in 
omparison with the Edgeworth expansion. No 
ontinuity termsare needed for it and, unlike the Edgeworth expansion, it 
an be easily used for shifteddistributions.Theorem 2.3 Let pmax � 1=4 and � � 1. Then we havesupF2F 


GPB(n; p; F )� Bi(N; ~p; F )�I +A1(F )�


� C�� !2jÆj1� Æ!=� +��3� � !2�2 + 1� nXj=1 pjjpj � !j� (23)� C� ; (24)supG2F infu2R ���GPB(n; p; IuG)� Bi(N; ~p; IuG)�I +A1(IuG)����� C�4=3� !2jÆj1� Æ!=� +��3� � !2�2 + 1� nXj=1 pj jpj � !j� (25)� C�4=3 : (26)Comparing (6) with (11) and (24) with (26), we see that, in both 
ases, shifting adds a`magi
 fa
tor' ��1=3.Let us 
onsider the symmetri
 
ase F 2 S. We use the same prin
iples of 
onstru
tionas above. However, we swit
h to the Kolmogorov norm and use the following estimates:supF2S ���ak(F )(~qI + ~pF )N ��� � C(k) 1�k ; (27)supF2S ���bk(F )(~qI + ~pF )N ��� � C(k) 1�k�1 ; k 2 N; (28)the proof of whi
h 
an be found below (see (61) and (62)). Here, as follows from (27) and(28), the estimate of the norm of the 
onvolution of ak(F ) with the 
ompound binomial dis-tribution is 
omparable to the similar estimate for bk+1(F ). Therefore, we use the followingformal expansion in powers of x:expn 1Xk=2(ak(F ) + bk+1(F ))xko = I + ~A2(F )x2 + ~A3(F )x3 + : : : :
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ompound binomial approximations 12Taking into a

ount (27) and (28), one 
an prove thatsupF2S ��� ~Ak(F )(~qI + ~pF )N ��� � C(k) 1�k ; k 2 N:Thus, in the symmetri
 
ase, as an approximation, we propose to use the �nite signedmeasure (~qI + ~pF )N�I + sXk=2 ~Ak(F )�; s 2 N: (29)Note that ~A2(F ) = a2(F ) + b3(F ) and that, more generally,~Ak(F ) =X�� kYm=2 1lm! (am(F ) + bm+1(F ))lm ; k 2 f2; 3; : : : g:Here P�� means the summation over all nonnegative integer solutions l2; : : : ; lk of theequation 2l2 + � � � + klk = k. In what follows, we present results for the approximation bythe signed measureBi(N; ~p ; F )(I + ~A2(F )) = (~qI + ~pF )N�I � �2 (! � ~p)(F � I)2 + �3��3� � !2�(F � I)3�:Theorem 2.4 Let pmax � 1=4 and � � 1. Then we havesupF2S ���GPB(n; p; F )� Bi(N; ~p; F )(I + ~A2(F ))���� C�3� !2jÆj1� Æ!=� + 1���3� � !2�2 + 1� nXj=1 pj jpj � !j� (30)� C�3 : (31)Moreover, for all F 2 S and h 2 (0;1), we have���GPB(n; p; F )� Bi(N; ~p; F )(I + ~A2(F ))���h� C�3� !2jÆj1� Æ!=� + 1���3� � !2�2 + 1� nXj=1 pjjpj � !j�Q1=13h (j lnQhj+ 1)252=13: (32)Here Qh is the same as in Theorem 2.1.We should note that, in the 
ase of latti
e distributions F , similar results are possible but,be
ause of la
k of spa
e, we omit them.
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ompound binomial approximations 132.4 Almost Binomial approximationAs noted by Thompson [18℄, estimate (9) does not re
e
t the `normal aspe
t' of the two-parametri
 approximation 
orre
tly and, in 
ertain situations, one should expe
t the ap-proximation to be of order O(n�1=2). This 
onje
ture is also supported by the similarity ofthe almost binomial distribution to the distribution Bi(N; ~p; I1) and estimate (6). Belowwe present the proof that Thompson's 
onje
ture is 
orre
t. We re
all that the randomvariable S has the distribution GPB(n; p; I1). Let ~Æ denote the fra
tional part of ~N , thatis ~N = b ~N
+ ~Æ, 0 � ~Æ < 1.Theorem 2.5 If 0 < ! < 1, then


GPB(n; p; I1)�ABi


 � 2P (S � ~N + 1) + 2!b ~N
+1(1� !)1�~Æ+ 8(1� !)(1� !~Æ=�)r e�� �2��3� � !2�: (33)This estimate indeed re
e
ts the `normal aspe
t' 
orre
tly, sin
e, for pj uniformly boundedaway from 0 and 1/4, its a

ura
y is at least of order O(n�1=2). However, it must be notedthat the 
onstants in (33) are larger than those 
onje
tured by Thompson [18℄.3 Auxiliary resultsWe begin with exponential smoothing estimates.Lemma 3.1 Let F 2 F , a 2 (0;1), and k 2 N. Then we havek(F � I) expfa(F � I)gk � r 2ae ; (34)k(F � I)2 expfa(F � I)gk � 3ae ; (35)infu2R j(IuF � I)k expfa(IuF � I)gj � C(k) 1ak=2+k=(2k+2) : (36)Proof. For the proof of (34), (35), and (36), see [8℄, [15℄ Lemma 3, [4℄ Theorem 3.1,respe
tively. �
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ompound binomial approximations 14Lemma 3.2 Let F 2 S, a; h 2 (0;1), and let k 2 N. Thenj(F � I)k expfa(F � I)gjh � C(k) 1ak ~Q1=(2k+1)h (j ln ~Qhj+ 1)6k(k+1)=(2k+1); (37)j(F � I)k expfa(F � I)gj � C(k) 1ak : (38)Here ~Qh = ~Qh;a;F = ��� expna4(F � I)o���h:Proof. Estimate (37) is a partial 
ase of Theorem 1.1 from [4℄. Note that, in [4℄, thereis a misprint in the power of the last fa
tor (
ompare the statement of the theorem in thepaper with its equation (4.25)). Estimate (38) follows from (37). �In what follows, we need the Fourier transform 
W (t), t 2 R of a �nite signed measureW 2 M. It is de�ned by 
W (t) = RR eitxWfdxg, where i denotes the 
omplex unit. It iseasy to 
he
k that, for V;W 2M and a; t 2 R,\expfWg(t) = expf
W (t)g; dV W (t) = bV (t)
W (t); bIa(t) = eita; bI(t) = 1:Note that if W 2 M is 
on
entrated on the integers, then the well-known Tsaregradskii[19℄ inequality establishes the relation between jW j and 
W (t) in the following way:jW j � 14� Z ��� j
W (t)jj sin(t=2)j dt: (39)The following lemma deals with the exponential smoothing inequalities for symmetri
 latti
edistributions and was proved in [5℄.Lemma 3.3 Let F 2 S be 
on
entrated on f�1;�2; : : :g, and let a; v 2 (0;1) and k 2 N.Then 12� Z ���(1� bF (t))v expfa( bF (t)� 1)gdt � 2�v + 1=2ae �v+1=2: (40)If, in addition, F has �nite varian
e �2, thenk(F � I)k expfa(F � I)gk � 3:6k1=4p1 + �� kae�k � C(k)p�ak : (41)It is well known that ea
h 
ompound distribution 
an be viewed as the distribution of arandom sum of independent random variables. Indeed, let SY = �1+ �2+ : : :+ �Y , where Yis a random variable 
on
entrated on the nonnegative integers, �j has distribution F , and
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ompound binomial approximations 15all these random variables are independent. Denoting the distribution of SY by '(F ), weget '(F ) = 1Xk=0P (Y = k)F k:Note that '(I1) is the distribution of Y . Similarly, we de�ne the 
ompound distribution (F ) = 1Xk=0P ( ~Y = k)F k:Here ~Y is a random variable 
on
entrated on the nonnegative integers. If the distributionsof Y and ~Y are 
lose, then one 
an also expe
t '(F ) and  (F ) to be 
lose. Let �k(') denotethe kth fa
torial 
umulant of Y , that is, for z = eit with t in a neighborhood of zero,ln� 1Xk=0P (Y = k)zk� = �1(')(z � 1) + �2(')(z � 1)22! + �3(')(z � 1)33! + : : : :Here and hen
eforth, we assume that all fa
torial 
umulants are �nite. Similarly to theabove, by �k( ), we de�ne the kth fa
torial 
umulant of ~Y . If fa
torial 
umulants of anonnegative integer-valued random variable behave regularly, then its distribution 
an berepla
ed by a mu
h simpler 
ompound Poisson law. The following lemma plays a 
ru
ialrôle here.Lemma 3.4 Let �k 2 R, k 2 N be su
h that, for some �xed A � A0 > 2,j�kj � (k � 1)!Ak�1 �1; �1 > 0; (42)for all k. Set f(A0) = 34A0 ln� A0A0 � 2�� 32 :Then, for all t > f(A0),supF2F 


 expnt�1(F � I) + 1Xk=2 �kk! (F � I)ko


 � 1 + f(A0)p2�(t� f(A0)) :Note that, for example, 0:72 < f(3:5) < 0:73.Proof. Let F 2 F . Note that �1 > 0 and, therefore, expft�1(F � I)g 2 F , and its totalvariation is equal to unity. Therefore, taking into a

ount (35) and Stirling's formula, we
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 expnt�1(F � I) + 1Xk=2 �kk! (F � I)ko


� 1 + 1Xr=1 1r!


� 1Xk=2 �kk! (F � I)k�2�r(F � I)2r expft�1(F � I)g


� 1 + 1Xr=1 1r!� 1Xk=2 j�kjk! 2k�2�r


(F � I)2 expn t�1r (F � I)o


r� 1 + 1Xr=1 (�1f(A0)=3)rr! � 3rt�1e�r = 1 + 1Xr=1 rrr!�f(A0)te �r� 1 + 1Xr=1 1p2�r�f(A0)t �r � 1 + f(A0)p2�(t� f(A0)) ;whi
h 
ompletes the proof. �Remark 3.1 Conditions of type (42) are usually asso
iated with large deviations and Pois-son approximations (see, for example, [2℄ or [6℄ and the referen
es therein).The following proposition is one of the main tools in the subsequent proofs.Proposition 3.1 Let h 2 (0;1) and let, for some �xed s 2 f2; 3; : : : g and A � 3:5,�k(') = �k( ) for all k 2 f1; : : : ; s� 1g:Suppose thatmaxfj�k(')j; j�k( )jg � (k � 1)! �1(')Ak�1 for all k 2 N (�1(') <1): (43)Then, for ea
h nonnegative integer m, we havek'(F ) �  (F )k � C s+m�1Xk=s j�k(') � �k( )jk! 


(F � I)k expn15�1(') (F � I)o


+ C R 


(F � I)s+m expn15�1(') (F � I)o


; (44)where R = 1Xk=s+m 2k�s�m j�k(') � �k( )jk! � C(s;m) �1(')As+m�1 : (45)Estimate (44) remains true with R given by (45) if the total variation norm k�k is everywhererepla
ed by the Kolmogorov norm j � j or by 
on
entration seminorm j � jh.
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ompound binomial approximations 17Remark 3.2 If m = 0, the �rst sum in the right-hand side of (44) is assumed to be zero.Proof. SetW1 =W1(F;') = 1Xk=2 �k(')k! (F � I)k; W2 =W2(F; ) = 1Xk=2 �k( )k! (F � I)k:We shall prove (44) for the total variation norm only. The remaining bounds for theKolmogorov and 
on
entration norms are shown in the same way. Applying Lemma 3.4with A0 = 3:5, t = 4=5, and �k = ��k(') + (1� �)�k( ), k 2 N, � 2 [0; 1℄, we obtaink'(F ) �  (F )k = k (F )(expfW1 �W2g � I)k= 


 (F )Z 10 (expf�(W1 �W2)g)0 d�


= 


 (F )Z 10 (W1 �W2) expf�(W1 �W2)gd�


� 


(W1 �W2) expn15�1(')(F � I)o


� Z 10 


 expn45�1(')(F � I) + �W1 + (1� �)W2o


d�� C 


(W1 �W2) expn15�1(')(F � I)o


� C 1Xk=s 


(F � I)k expn15�1(')(F � I)o


 j�k(')� �k( )jk!� C s+m�1Xk=s 


(F � I)k expn15�1(')(F � I)o


 j�k(')� �k( )jk!+ C 


(F � I)s+m expn15�1(')(F � I)o


� 1Xk=s+m(kFk+ kIk)k�s�m j�k(')� �k( )jk! :Noting that kIk = kFk = 1, we 
omplete the proof of (44). Taking into a

ount (43), weget R � �1(') 1Xk=s+m 2k�s�m+1kAk�1 � C(s;m) �1(')As+m�1 :The last estimate 
ompletes the proof of the proposition. �
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ompound binomial approximations 184 ProofsIn the proofs, we 
onstantly apply the following fa
t: if � � 1 and pmax � 1=4, then, inview of (3), ! � pmax � 1=4, and jÆj � 1=2, we see that~p = !1� Æ!=� � 27 : (46)Moreover, ~p = �N � 1n+ 1 > 0: (47)Proof of Theorem 2.1. We apply Proposition 3.1 with'(F ) = nYj=1(qjI + pjF );  (F ) = �~qI + ~pF �N (48)and s = m = 2. Then�k(')k! = (�1)k+1k �k; �k( )k! = (�1)k+1k N ~pk; k 2 N:Note that (43) is satis�ed with �1(') = � and A = 3:5. Moreover, from the de�nition of Nand ~p, we getj! � ~pj = !2jÆj�� Æ! ; j�2 �N ~p2j = �j! � ~pj;j�3 �N ~p3j = �����3� � ~p2��� � �����3� � !2���+ �(! + ~p) j! � ~pj;j�k �N ~pkj � ��� nXj=1 pj(pk�1j � !k�1)���+ �j!k�1 � ~pk�1j� k nXj=1 pjjpj � !j�14�k�2 + k�j! � ~pj�27�k�2; (k 2 N):Applying the last estimate to (45), we obtainR = 1Xk=4 2k�4k j�k �N ~pkj� 1Xk=4 2k�4� nXj=1 pjjpj � !j�14�k�2 + �j! � ~pj�27�k�2�= 421�j! � ~pj+ 18 nXj=1 pjjpj � !j: (49)
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ompound binomial approximations 19Consequently,j'(F ) �  (F )j � C� 4Xk=2 ���(F � I)k expn15�(F � I)o��� !2jÆj1� Æ!=�+ ���(F � I)3 expn15�(F � I)o���� ����3� � !2���+ ���(F � I)4 expn15�(F � I)o��� nXj=1 pjjpj � !j�: (50)To 
omplete the proof of (12), it suÆ
es to apply Lemma 3.2. For the proof of (14), in (50),the Kolmogorov norm j � j is everywhere repla
ed by the 
on
entration seminorm j � jh. Forthe shifted 
ase, in (50), we repla
e F by IuG and, for k � 2, apply the estimate���(IuG� I)k expn15�(IuG� I)o��� � ���(IuG� I)2 expn 110�(IuG� I)o���� 


(I1 � I)k�2 expn 110�(I1 � I)o


� C(k)�(k�2)=2 ���(IuG� I)2 expn 110�(IuG� I)o���and (36). �Proof of Theorem 2.2. It is easy to 
he
k that, for t 2 R, we have qj+pj bF (t) � 1�2pj >0 and ~q+ ~p bF (t) � 1� 2~p > 0. Therefore, the 
hara
teristi
 fun
tions of GPB(n; p; F ) andBi(N; ~p; F ) do not ex
eed expf�( bF (t) � 1)g. Let us assume that h = 0 and denote theleft-hand side of (15) by T . By the inversion formula, similarly to the derivation of (50),we obtainT � 12� Z ��� expf�( bF (t)� 1)g��� nXj=1 ln(1 + pj( bF (t)� 1)) �N ln(1 + ~p( bF (t)� 1))��� dt� 12� Z ��� expf�( bF (t)� 1)g 1Xk=2 j bF (t)� 1jkk j�k �N ~pkjdt� 12� Z ��� expf�( bF (t)� 1)g� !2jÆj1� Æ!=��12 j bF (t)� 1j2 + 528 j bF (t)� 1j3 + 421 j bF (t)� 1j4�+ 13 j bF (t)� 1j3�����3� � !2���+ 18 j bF (t)� 1j4 nXj=1 pjjpj � !j�dt:For the lo
al estimate, it suÆ
es to apply (40). Indeed, it 
an be used that ��1�3�!2 � 0and that, under the present assumptions, 1 � bF (t) � 0. Estimate (15) follows from theobvious fa
t that, for W 2M 
on
entrated on the integers, jW jh � bh+1
jW j0. The proof
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ompound binomial approximations 20of (17) is very similar. The only di�eren
e is to apply Tsaregradskii's inequality (39) andq1� bF (t) � �p2��� sin t2 ���; t 2 R:The proof for the total variation norm follows from the analogue of (50) and from (41). �Proof of Theorems 2.3 and 2.4. Let '(F ) and  (F ) be de�ned as in (48), and let the
onditions of Proposition 3.1 be satis�ed. As in the proof of Theorem 2.1, we getj�2(')� �2( )j = �j! � ~pj = !2jÆj1� Æ!=�;j�3(')� �3( )j � C(�j! � ~pj+ j�3 � �!2j);1Xk=4 j�k(') � �k( )jk! 2k � C��j! � ~pj+ nXj=1 pjjpj � !j�:Set W3 = �2(')� �2( )2 (F � I)2 + �3(')� �3( )6 (F � I)3= 12�(~p� !)(F � I)2 + 13(�3 � �~p2)(F � I)3:Thenj'(F ) �  (F )(I +A1(F ))j � j'(F )�  (F ) expfW3gj+ j (F )(expfW3g � I �W3)j+ j (F )(W3 �A1(F ))j: (51)It is easily seen that Proposition 3.1 is appli
able to '(F ) and the �nite signed measure (F ) expfW3g with s = 4 and m = 0. Using (35), we obtainj'(F ) �  (F ) expfW3gj � C���(F � I)4 expn15�(F � I)o��� 1Xk=4 j�k(') � �k( )jk! 2k� C���(F � I)2 expn 110�(F � I)o���� !2jÆj�� Æ! + 1� nXj=1 pj jpj � !j�: (52)
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ompound binomial approximations 21Let W2 be de�ned as in the proof of Proposition 3.1. Then, applying (34) similarly to theproof of Proposition 3.1, we getj (F )(expfW3g � I �W3)j � ��� (F )Z 10 (1� �)W 23 expf�W3gd� ���� Z 10 (1� �)���W 23 expf�1(')(F � I) +W2 + �W3g��� d�� C���W 23 expn15�(F � I)o���� C�(�2(')� �2( ))2���(F � I)4 expn15�(F � I)o���+ (�3(') � �3( ))2���(F � I)6 expn15�(F � I)o���+ j�2(') � �2( )jj�3(')� �3( )j���(F � I)5 expn15�(F � I)o����� C���(F � I)2 expn 110�(F � I)o����� !2jÆj1� Æ!=��2 1� +��3� � !2�2�: (53)Finally, we havej (F )(W3 �A1(F ))j � C���(F � I)2 expn 110�(F � I)o��� !2jÆj1� Æ!=�: (54)Let F = IuG. Then 
olle
ting estimates (51){(54) and applying (36), we 
omplete the proofof (25). For the proof of (23), we repla
e the Kolmogorov norm by the total variation normand use (35). For the proof of (30) (resp. (32)), we repla
e A1(F ) by ~A2(F ) and use (38)(resp. (37)). �Proof of Theorem 2.5. Let us de�ne � 2 F by�fjg = 1~C� ~Nj �!j(1� !) ~N�j ; (j 2 f0; 1; : : : ; b ~N
g);where ~C = b ~N
Xj=0� ~Nj �!j(1� !) ~N�j :By (8), we see that ~C 2 (0; 1℄. Let us introdu
e the Stein operator A by(Ag)(j) := 8<: ( ~N � j)!g(j + 1)� j(1� !)g(j); if j 2 f0; 1; : : : ; ng n fb ~N
g;�b ~N
(1� !)g(b ~N
); if j = b ~N
; (55)where g is a real-valued sequen
e de�ned on the nonnegative integers. For a Borel setA � R, let g = gA be solution of the following Stein equation:(Ag)(j) = I(j 2 A)� �fAg; j 2 f0; 1; : : : ; b ~N
g: (56)
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ompound binomial approximations 22Here I(j 2 A) = 1 if j 2 A and I(j 2 A) = 0, otherwise. We assume that g(0) = 0 andg(b ~N
+1) = g(b ~N
+2) = ::: = 0. Stein's method strongly depends on the properties of g.Employing the results of Barbour et al. ([3℄, pp. 188{190), we obtainsupj�0 jg(j + 1)� g(j)j � 1b ~N
!(1 � !) : (57)Note that our bound (57) is slightly worse than 1=( ~N!(1 � !)), whi
h follows from [3℄pp. 188{190 under the assumption that g(0) = g(1) and g(j) = g(b ~N
) for j = b ~N
 +1; b ~N
+ 2 : : : . For our 
ase, we must take into a

ount that, in view of (55) and (56),jg(b ~N
+ 1)� g(b ~N
)j = jg(b ~N
)j � 1b ~N
(1� !) :We have P (S 2 A)�ABifAg = E (Ag)(S) + (�fAg �ABifAg)+ nXj=b ~N
+1P (S = j)(I(j 2 A)� �fAg):Due to the de�nition of ABi, for j 2 f0; 1; : : : ; b ~N
g, we have ABifjg = ~C�(j). Conse-quently, by (8), k��ABik = 2(1 � ~C)= 2 ~N� ~N � 1b ~N
 �Z !0 yb ~N
(1� y) ~N�1�b ~N
 dy� 2 ~N� ~N � 1b ~N
 � 1(1� !)1�~Æ Z !0 yb ~N
 dy� 2!b ~N
+1(1� !)1�~Æ : (58)Clearly, we have that��� nXj=b ~N
+1P (S = j)(I(j 2 A)� �fAg)��� � P (S � ~N + 1): (59)By Zj , j 2 f1; : : : ; ng, we denote independent Bernoulli random variables with P (Zj = 1) =pj = 1� P (Zj = 0). Obviously, S =Pnj=1 Zj. Let Sj = S � Zj, and lethj = E(g(Sj + 2)� g(Sj + 1)); h = 1� nXj=1 pjhj :
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ompound binomial approximations 23We have ~N! = � and EZj g(S) = pjEg(Sj + 1). Therefore,E (Ag)(S) = E (�g(S + 1)� Sg(S)) � !ES(g(S + 1)� g(S))= nXj=1 pj�Eg(S + 1)� Eg(Sj + 1)�� ! nXj=1 pjhj= nXj=1 p2jhj � ! nXj=1 pjhj = nXj=1 pj(pj � !)(hj � h):In [7℄ (see Eq. (4.11) and the subsequent remark), it was proved that��� nXj=1 pj(pj � !)(hj � h)��� � 4 supj jg(j + 1)� g(j)jr e�� �2 (�3 � �!2):Thus, taking into a

ount (57), we obtain���E(Ag)(S)��� � 4(1� !)(1 � !~Æ=�)r e�� �2��3� � !2�: (60)Now it remains to 
olle
t estimates (58), (59), and (60). Note that some of the 
onstantsin (33) were doubled be
ause of the property (1). �Proof of (27) and (28). Let �k = (k � 1)!(�1)k+1N ~pk. Note that, under our assump-tions, ~p � 2=7. Therefore, taking into a

ount Lemmas 3.4 and 3.2, similarly to the proofof (19) and (20), we obtainsupF2S jak(F )(~qI + ~pF )N j � supF2S j(F � I)k(~qI + ~pF )N j= supF2S ���(F � I)k expn 110�(F � I) + 910�(F � I) + 1Xm=2 �mm! (F � I)mo���� supF2S ���(F � I)k expn 110�(F � I)o��� 


 expn 910�(F � I) + 1Xm=2 �mm! (F � I)mo


� C(k) supF2S ���(F � I)k expn 110�(F � I)o��� � C(k)�k (61)and supF2S jbk(F )(~qI + ~pF )N j � C(k)� supF2S j(F � I)k(~qI + ~pF )N j � C(k)�k�1 : (62)This 
ompletes the proof. �
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