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Two-parametri ompound binomial approximations 2binomial distribution. We show that the symmetry or suitable shifting of distributions sig-ni�antly inrease the auray of approximation. For the proofs, we use the properties ofthe exponentials of �nite signed measures, relations between norms, and known results ononvolutions of symmetri and shifted distributions. In the lattie ase, we apply the har-ateristi funtion method. The results for the almost binomial approximation are derivedusing Stein's method.1.2 NotationLet R and N denote the sets of real numbers and positive integers, respetively. For ourpurposes, it is more onvenient to formulate all results in terms of distributions or signedmeasures rather than in terms of random variables. Let F (resp. S, M) denote the set ofprobability distributions (resp. symmetri probability distributions about zero, �nite signedmeasures) on R. The distribution onentrated at a point u 2 R is denoted by Iu. Set I = I0.All produts and powers of �nite signed measures are de�ned in the onvolution sense. ForW 2 M, set W 0 = I. Let W = W+ �W� denote the Hahn{Jordan deomposition of W .The total variation norm, the Kolmogorov norm, and the L�evy onentration seminorm ofW are de�ned by kWk = W+fRg +W�fRg;jW j = supx2R jWf(�1; x℄gj;jW jh = supx2R jWf[x; x+ h℄gj; h 2 [0; 1);respetively. Note that, for W onentrated on integers, jW j0 is the so-alled loal normof W . It is well known that, for V;W 2M, u 2 R, and h 2 [0;1), we havekVWk � kV k kWk; jV W j � jV j kWk; jV W jh � jV jh kWk;kIuV k = kV k; jIuV j = jV j; jIuV jh = jV jh; jW j � kWk; jW jh � kWk:Note that, if WfRg = 0, then, as is easily seen, maxfjW j; jW jhg � 2�1kWk. The totalvariation distane between V;W 2 M with the same total mass V fRg = WfRg an beevaluated in terms of the total variation norm, i.e.,dTV(V; W ) := supA j(V �W )fAgj = 12kV �Wk: (1)



Two-parametri ompound binomial approximations 3The supremum in (1) is taken over all Borel sets A � R. The exponential of W 2 M isde�ned by the �nite signed measureexpfWg = 1Xm=0 Wmm! :We denote by C positive absolute onstants that may di�er from line to line. Similarly, byC(�) we denote positive onstants depending on the indiated argument only. Letn 2 N; pj 2 [0; 1℄; qj = 1� pj ; (j 2 f1; : : : ; ng);pmax = max1�j�n pj; pmin = min1�j�n pj; p = (p1; : : : ; pn);�k = nXj=1 pkj ; (k 2 N); � = �1; ! = �2� ; ~N = �2�2 ; (2)N = �2�2 � Æ; N 2 N; jÆj � 12 ; ~p = �N = !1� Æ!=�; ~q = 1� ~p; (3)GPB(n; p; F ) = nYj=1(qjI + pjF ); Bi(N; ~p; F ) = (~qI + ~pF )N ; (F 2 F):We always assume that ~p � 1. Note that Bi(N; ~p; I1) and GPB(n; p; I1) are the binomialand Poisson binomial distributions, respetively. Let S denote a random variable withdistribution GPB(n; p; I1).The main goal of this paper is to give bounds for the auray of approximation ofthe generalized Poisson binomial distribution GPB(n; p; F ), (F 2 F) by the ompoundbinomial law Bi(N; ~p; F ). Note that we are always interested in the ase � � 1, and oneof our main tasks is an establishment of expliit dependene of the estimates on �. Byanalogy with the Poisson approximation, we an say that we onentrate our e�orts on theobtaining the `magi fators' ��r for some r > 0 (see Introdution of [3℄).1.3 Known resultsIn general, there are two di�erent methods for hoosing the parameters of the approximatingbinomial distribution. The �rst one assumes the replaement of all pj by their mean. Forthe Poisson binomial distribution, suh a one-parametri approximation was onsidered byEhm [9℄ and Roos [14℄. The main disadvantage of the one-parametri approah is relatedto the fat that only one moment of the approximated distribution an be mathed. As a



Two-parametri ompound binomial approximations 4typial one-parametri result, we have���kGPB(n; p; I1)� Bi(n; p; I1)k �r 2�e ���� � C �minn1; � + 1p�(1� p)o; (4)where p = �n; � = Pnj=1(p� pj)2�(1� p) ;for a slightly stronger result, see Theorem 3 in [14℄. In Remark on p. 259 of [14℄, it is shownthat � � pmax � pmin. Therefore, in view of (4), it seems that the one-parametri binomialapproximation is appliable in the ase where the pj are lose in some sense. Moreover, theonverse holds. Indeed, from Ehm's [9℄ results it follows that the total variation norm termin the left-hand side of (4) is small if and only if � is small. In what follows, whenever wespeak of lose pj , we mean that � is small. An extension of the one-parametri approah tothe ompound binomial ase is given in [5℄.The seond approah is based on mathing the �rst two moments of the Poisson binomialand binomial distributions. Thus, we have the two-parametri ase. Reall that S denotes arandom variable with distributionGPB(n; p; I1). As an approximation, we use the binomialdistribution Bi(N; ~p; I1). Obviously, both distributions have the same mean � = N ~p. Theexat mathing of the varianes is usually not ahieved beause of the neessity of N 2 N.However, the di�erene between the varianes is small. Indeed, sine !=� � 1 and jÆj � 1=2,we have ��� nXj=1 pjqj �N ~p~q��� = !2jÆj1� Æ!=� � !2 � p2max: (5)As a typial two-parametri result, we have, for 0 < ~p < 1,GPB(n; p; I1)� Bi(N; ~p; I1)� 2P (S � N + 1) + 2~q� !2jÆj�� Æ! + 4min�1; pep�� �2���3� � !2��: (6)Estimate (6) was obtained by �Cekanavi�ius and Vaitkus ([7℄, Theorem 4.1) and is an im-provement of previous results of Barbour et al. ([3℄, p. 190) and Soon [16℄ if one takesinto aount the assumptions of this paper. Note that Soon [16℄ applied a two-parametribinomial approximation to a muh more general ase of the sum of dependent indiators.Note also that, in all three papers mentioned above, the summand 2P (S � N + 1) was



Two-parametri ompound binomial approximations 5overlooked. However, it is often quite small. Indeed, from Bernstein's inequality it followsthat P (S � N + 1) � expn�14��2�2 � ��o � expn��4 (1� !)o(see [1℄, Theorem 1.4.1). Therefore, as a rule, the order of auray of approximation in (6)is determined by the seond summand.It is easy to hek that if all pj are equal, then both sides in (6) vanish. Thus, thetwo-parametri binomial approximation retains one of the most essential properties of theone-parametri approximation. Now, let us onsider the ase where the pj are not lose anduniformly bounded away from 0 and 1. Then the one-parametri binomial approximationis inaurate, sine the total variation distane between the orresponding distributions islarger than some absolute onstant. On the other hand, if, in addition, ~p � C < 1, thenthe two-parametri binomial approximation is of auray Cn�1=2. In the ase mentioned,the lassial Berry{Esseen inequality tells us that, for the Kolmogorov norm, one an alsoapply the normal approximation with auray Cn�1=2. Thus, we onlude that, to someextent, the two-parametri binomial approximation ombines the advantages of both theone-parametri binomial and normal approximations.By the properties of the total variation norm (see, for example, [12℄),GPB(n; p; I1)� Bi(N; ~p; I1) = supF2F GPB(n; p; F )� Bi(N; ~p; F ): (7)Consequently, if treated as a ompound binomial approximation, estimate (6) orrespondsto the worst possible ase. On the other hand, if F satis�es ertain strutural onditions,one an use them to ahieve some improvements in the auray. The main purpose ofthis paper is an investigation of the hanges in the auray of the ompound binomialapproximation, when F is a symmetri or suitably shifted distribution.As already mentioned above, the hoie of parameters for the two-parametri approxi-mation Bi(N; ~p; I1) is based on mathing the �rst two moments. Reall the de�nition of ~N ,!, and S. Obviously, ~N! = � and ~N!(1�!) = �� �2 oinide with mean and variane ofS, respetively. However, we annot take ~N and ! as the binomial parameters, sine, due tothe de�nition of the binomial law, the parameter N must be a positive integer. Therefore,N is de�ned as an integer losest to ~N , and ~p is hosen to satisfy N ~p = �. Thompson [17℄



Two-parametri ompound binomial approximations 6introdued a di�erent approah, replaing the binomial approximation by an almost bino-mial approximation, whih depends diretly on ~N and !. The almost binomial distributionABi = ABi( ~N;!) is de�ned byABifkg =8<: � ~Nk �!k(1� !) ~N�k; k 2 f0; 1; : : : ; b ~Ng;1�Pb ~Nk=0 � ~Nk �!k(1� !) ~N�k; k = b ~N+ 1:Here � ~Nk � =Qkm=1(( ~N �m+1)=m), and b ~N 2 N denotes the integer part of ~N . One mayask whether ABi is, indeed, a probability distribution. In fat, it should be lari�ed thatABifb ~N+ 1g � 0. But this easily follows from the identitymXk=0�xk�rk(1� r)x�k = 1� x�x� 1m �Z r0 ym(1� y)x�1�m dy; (8)whih holds for all m = 0; 1; 2; : : : , r 2 [0; 1), and x 2 R. In the ase x 2 N, this is awell-known fat (see [11℄, p. 110). For general x, (8) remains valid, as one an show bydi�erentiating the left-hand side with respet to r. Thompson [17, 18℄ has shown that, forA � f0; 1; : : : ; b ~Ng,jP (S 2 A)�ABifAgj � 41� !��3� � !2�+ n� b ~N � 1(1� !)(b ~N+ 1)P (S � b ~N+ 2): (9)It should be mentioned that the bound in (9) annot trivially be viewed as a bound fordTV(GPB(n; p; I1); ABi). Indeed, the onsideration of omplements is not suÆient, sineGPB(n; p; I1) and ABi are onentrated on f0; : : : ; ng � f0; : : : ; b ~N+1g, respetively, andsine the set A is not allowed to ontain b ~N+1. Further, estimate (9) is more onservativethan (6) in the sense that it is not omparable to the normal one whenever the pj are notlose. However, as observed by Thompson [18℄, numerial experiments show that the left-hand side of (9) seems to be of order Cn�1=2. Therefore, one an expet that the right-handside might be improved (see Setion 2.4).Note that there are also some other approahes, di�erent from that of this paper (see,for example, [10℄).



Two-parametri ompound binomial approximations 72 Results2.1 General distributionsIn this setion, we onsider shifted and symmetri distributions F 2 F . By a shifteddistribution, we mean F = IuG, where G 2 F and u 2 R. Then, minimizing the normestimate of the di�erene between GPB(n; p; IuG) and Bi(N; ~p; IuG) with respet to u,one an expet some improvement of the auray of approximation. Shifted and symmetridistributions play an important rôle in ompound Poisson approximations (see, for example,[1℄ and [12℄). Note that, in the following theorem, we do not assume the �niteness of anymoments.Theorem 2.1 Let pmax � 1=4 and � � 1. Then we havesupG2F infu2R ���GPB(n; p; IuG)� Bi(N; ~p; IuG)���� C�5=6� 1�1=2 !2jÆj1� Æ!=� +��3� � !2�+ 1�3=2 nXj=1 pj jpj � !j� (10)� C�5=6 ; (11)supF2S ���GPB(n; p; F )� Bi(N; ~p; F )���� C�2� !2jÆj1� Æ!=� +��3� � !2�+ 1�2 nXj=1 pj jpj � !j� (12)� C�2 : (13)Moreover, for all F 2 S and h 2 (0;1), we have���GPB(n; p; F )� Bi(N; ~p; F )���h� C�2� !2jÆj1� Æ!=� +��3� � !2�+ 1�2 nXj=1 pjjpj � !j�Q1=9h (j lnQhj+ 1)40=3: (14)Here Qh denotes the L�evy onentration funtionQh = Qh;�;F = ��� expn �20(F � I)o���h:Remark 2.1 (a) Estimates (11) and (13) are added for demonstration of the auraywhen pj are not lose. In this sense, estimates (10) and (12) are sharper than (11)



Two-parametri ompound binomial approximations 8and (13), sine, if pj = p for all j, they are equal to zero. Note that, in ontrast to(10){(13), the bound in (14) depends on F .(b) The assumption pmax � 1=4 is a onsequene of the method of proof.2.2 Lattie distributionsIt seems that, for the total variation norm, estimates of the same auray and generalityas in (10){(13) are unobtainable. However, for a lattie distribution F with �nite seondmoment, some analogue of (12) holds. Moreover, in this ase, we obtain the estimates forthe Kolmogorov norm and onentration seminorm with expliit onstants.Theorem 2.2 Let pmax � 1=4 and � � 1. Let F 2 S be onentrated on f�1;�2; : : :g.Then, for h 2 [0;1), we have���GPB(n; p; F )� Bi(N; ~p; F )���h � bh+ 1�5=2 � !2jÆj1� Æ!=��0:82 + 0:87� + 3:69�2 �+ 1:62��3� � !2�+ 2:42�2 nXj=1 pj jpj � !j� (15)� C h+ 1�5=2 :If, in addition, F has �nite variane �2, thenGPB(n; p; F )� Bi(N; ~p; F ) � Cp��2 � !2jÆj1� Æ!=� +��3� � !2�+ 1�2 nXj=1 pjjpj � !j� (16)� C p��2 ;���GPB(n; p; F )� Bi(N; ~p; F )��� � ��2� !2jÆj1� Æ!=��0:39 + 0:34� + 1:27�2 �+ 0:64��3� � !2�+ 0:83�2 nXj=1 pjjpj � !j� (17)� C ��2 :Remark 2.2 (a) Taking h < 1, from (15) we get an estimate for the loal norm, whihis of better order than one that an be obtained from the more general estimate (14)(see also [5℄). It also ontains expliit onstants.



Two-parametri ompound binomial approximations 9(b) The main advantage of estimate (17), in omparison to (16) and (12), is its expliitonstants. Note that, unlike estimate (12), it ontains the undesirable fator �, whihannot be less than one. Estimate (17) is obtained by a diret appliation of Tsare-gradskii's inequality (see [19℄ or (39) below) and reveals, to some extent, the limitationsof suh an approah.2.3 Asymptoti expansionsIn this setion, we introdue asymptoti expansions for the two-parametri ompound bi-nomial approximation. As above, we investigate the ases of shifted and symmetri distri-butions F . However, we begin with the general ase F 2 F . In this setion, we assumethat � � 1 and pmax � 1=4, whih implies that 0 < ~p � 2=7 (see (46) and (47) below).As explained in the introdution, we onentrate ourselves on the `magi fators.' Theonstrution of an asymptoti expansion an, therefore, be outlined as follows. Under theassumptions above, the auray in (6) is at least of order C��1=2. The task is to hoose a�nite signed measure whih, when added to the binomial approximation, leads to a remain-der of order C��1. The addition of the next member of the asymptoti expansion gives aremainder of order C��3=2, and so on.Let us begin with the simple identitynYj=1(qjI + pjF ) = (~qI + ~pF )N expn 1Xk=1(ak(F ) + bk(F ))o; F 2 F ; (18)where ak(F ) = (�1)k+1k �(!k�1 � ~pk�1)(F � I)k;bk(F ) = (�1)k+1k nXj=1 pj(pk�1j � !k�1)(F � I)k; k 2 N:Note that a1(F ), b1(F ), and b2(F ) are zero measures. In what follows, we have to expand theexponential of signed measure in some power series and then to ollet the summands havingthe same order of smallness with respet to �. The order of smallness will be determined bythe magnitude of the total variation norm of their onvolution with the ompound binomialdistribution. The measure ak(F ) ontains a fator whih is bounded by unity. Indeed,�k j!k�1 � ~pk�1j � �j! � ~pj = !2jÆj1� Æ!=� � !2 � 1;



Two-parametri ompound binomial approximations 10(see (5)). Consequently, by the properties of the total variation norm (see (7)), for k 2 N,we have supF2F kak(F )(~qI + ~pF )Nk � supF2F k(F � I)k(~qI + ~pF )Nk= k(I1 � I)k(~qI + ~pI1)Nk� C(k) 1�k=2 : (19)Similarly,supF2F kbk(F )(~qI + ~pF )Nk � � supF2F k(F � I)k(~qI + ~pF )Nk � C(k) 1�(k�2)=2 : (20)The estimates for F = I1 an be obtained, for example, by applying Lemma 4 from [14℄.As follows from (19) and (20), the estimate of the norm of the onvolution of ak(F ) withthe ompound binomial distribution is omparable to the similar estimate for bk+2(F ).Therefore, we use the following formal expansion in powers of x:expn 1Xk=1(ak(F ) + bk+2(F ))xko = I +A1(F )x+A2(F )x2 + : : : :Taking into aount (19) and (20), one an prove thatsupF2F Ak(F )(~qI + ~pF )N � C(k) 1�k=2 ; k 2 N: (21)Thus, as an approximation, we propose to use the �nite signed measure(~qI + ~pF )N�I + sXk=1Ak(F )�; s 2 f0; 1; : : : g: (22)Note that, by the formula of Fa�a di Bruno (see, for example, [13℄, pp. 135{136),A1(F ) = b3(F ); A2(F ) = a2(F ) + b4(F ) + 12b23(F );Ak(F ) = X� kYm=1 1lm! (am(F ) + bm+2(F ))lm ; k 2 N:HereP� means the summation over all nonnegative integer solutions l1; : : : ; lk of the equa-tion l1 + 2l2 + � � �+ klk = k.If pmin is bounded away from zero, then � � Cn, and expansion (22) an be writtenas a sum of signed measures, the norms of whih, due to (21), are bounded from above



Two-parametri ompound binomial approximations 11by powers of n�1=2. For the ase F = I1 and the Kolmogorov norm, a similar resultan be obtained by the Edgeworth expansion, whih on�rms the already noted similaritybetween the two-parametri binomial approximation and the normal one. Remarkably, (22)has ertain advantages in omparison with the Edgeworth expansion. No ontinuity termsare needed for it and, unlike the Edgeworth expansion, it an be easily used for shifteddistributions.Theorem 2.3 Let pmax � 1=4 and � � 1. Then we havesupF2F GPB(n; p; F )� Bi(N; ~p; F )�I +A1(F )�� C�� !2jÆj1� Æ!=� +��3� � !2�2 + 1� nXj=1 pjjpj � !j� (23)� C� ; (24)supG2F infu2R ���GPB(n; p; IuG)� Bi(N; ~p; IuG)�I +A1(IuG)����� C�4=3� !2jÆj1� Æ!=� +��3� � !2�2 + 1� nXj=1 pj jpj � !j� (25)� C�4=3 : (26)Comparing (6) with (11) and (24) with (26), we see that, in both ases, shifting adds a`magi fator' ��1=3.Let us onsider the symmetri ase F 2 S. We use the same priniples of onstrutionas above. However, we swith to the Kolmogorov norm and use the following estimates:supF2S ���ak(F )(~qI + ~pF )N ��� � C(k) 1�k ; (27)supF2S ���bk(F )(~qI + ~pF )N ��� � C(k) 1�k�1 ; k 2 N; (28)the proof of whih an be found below (see (61) and (62)). Here, as follows from (27) and(28), the estimate of the norm of the onvolution of ak(F ) with the ompound binomial dis-tribution is omparable to the similar estimate for bk+1(F ). Therefore, we use the followingformal expansion in powers of x:expn 1Xk=2(ak(F ) + bk+1(F ))xko = I + ~A2(F )x2 + ~A3(F )x3 + : : : :



Two-parametri ompound binomial approximations 12Taking into aount (27) and (28), one an prove thatsupF2S ��� ~Ak(F )(~qI + ~pF )N ��� � C(k) 1�k ; k 2 N:Thus, in the symmetri ase, as an approximation, we propose to use the �nite signedmeasure (~qI + ~pF )N�I + sXk=2 ~Ak(F )�; s 2 N: (29)Note that ~A2(F ) = a2(F ) + b3(F ) and that, more generally,~Ak(F ) =X�� kYm=2 1lm! (am(F ) + bm+1(F ))lm ; k 2 f2; 3; : : : g:Here P�� means the summation over all nonnegative integer solutions l2; : : : ; lk of theequation 2l2 + � � � + klk = k. In what follows, we present results for the approximation bythe signed measureBi(N; ~p ; F )(I + ~A2(F )) = (~qI + ~pF )N�I � �2 (! � ~p)(F � I)2 + �3��3� � !2�(F � I)3�:Theorem 2.4 Let pmax � 1=4 and � � 1. Then we havesupF2S ���GPB(n; p; F )� Bi(N; ~p; F )(I + ~A2(F ))���� C�3� !2jÆj1� Æ!=� + 1���3� � !2�2 + 1� nXj=1 pj jpj � !j� (30)� C�3 : (31)Moreover, for all F 2 S and h 2 (0;1), we have���GPB(n; p; F )� Bi(N; ~p; F )(I + ~A2(F ))���h� C�3� !2jÆj1� Æ!=� + 1���3� � !2�2 + 1� nXj=1 pjjpj � !j�Q1=13h (j lnQhj+ 1)252=13: (32)Here Qh is the same as in Theorem 2.1.We should note that, in the ase of lattie distributions F , similar results are possible but,beause of lak of spae, we omit them.



Two-parametri ompound binomial approximations 132.4 Almost Binomial approximationAs noted by Thompson [18℄, estimate (9) does not reet the `normal aspet' of the two-parametri approximation orretly and, in ertain situations, one should expet the ap-proximation to be of order O(n�1=2). This onjeture is also supported by the similarity ofthe almost binomial distribution to the distribution Bi(N; ~p; I1) and estimate (6). Belowwe present the proof that Thompson's onjeture is orret. We reall that the randomvariable S has the distribution GPB(n; p; I1). Let ~Æ denote the frational part of ~N , thatis ~N = b ~N+ ~Æ, 0 � ~Æ < 1.Theorem 2.5 If 0 < ! < 1, thenGPB(n; p; I1)�ABi � 2P (S � ~N + 1) + 2!b ~N+1(1� !)1�~Æ+ 8(1� !)(1� !~Æ=�)r e�� �2��3� � !2�: (33)This estimate indeed reets the `normal aspet' orretly, sine, for pj uniformly boundedaway from 0 and 1/4, its auray is at least of order O(n�1=2). However, it must be notedthat the onstants in (33) are larger than those onjetured by Thompson [18℄.3 Auxiliary resultsWe begin with exponential smoothing estimates.Lemma 3.1 Let F 2 F , a 2 (0;1), and k 2 N. Then we havek(F � I) expfa(F � I)gk � r 2ae ; (34)k(F � I)2 expfa(F � I)gk � 3ae ; (35)infu2R j(IuF � I)k expfa(IuF � I)gj � C(k) 1ak=2+k=(2k+2) : (36)Proof. For the proof of (34), (35), and (36), see [8℄, [15℄ Lemma 3, [4℄ Theorem 3.1,respetively. �



Two-parametri ompound binomial approximations 14Lemma 3.2 Let F 2 S, a; h 2 (0;1), and let k 2 N. Thenj(F � I)k expfa(F � I)gjh � C(k) 1ak ~Q1=(2k+1)h (j ln ~Qhj+ 1)6k(k+1)=(2k+1); (37)j(F � I)k expfa(F � I)gj � C(k) 1ak : (38)Here ~Qh = ~Qh;a;F = ��� expna4(F � I)o���h:Proof. Estimate (37) is a partial ase of Theorem 1.1 from [4℄. Note that, in [4℄, thereis a misprint in the power of the last fator (ompare the statement of the theorem in thepaper with its equation (4.25)). Estimate (38) follows from (37). �In what follows, we need the Fourier transform W (t), t 2 R of a �nite signed measureW 2 M. It is de�ned by W (t) = RR eitxWfdxg, where i denotes the omplex unit. It iseasy to hek that, for V;W 2M and a; t 2 R,\expfWg(t) = expfW (t)g; dV W (t) = bV (t)W (t); bIa(t) = eita; bI(t) = 1:Note that if W 2 M is onentrated on the integers, then the well-known Tsaregradskii[19℄ inequality establishes the relation between jW j and W (t) in the following way:jW j � 14� Z ��� jW (t)jj sin(t=2)j dt: (39)The following lemma deals with the exponential smoothing inequalities for symmetri lattiedistributions and was proved in [5℄.Lemma 3.3 Let F 2 S be onentrated on f�1;�2; : : :g, and let a; v 2 (0;1) and k 2 N.Then 12� Z ���(1� bF (t))v expfa( bF (t)� 1)gdt � 2�v + 1=2ae �v+1=2: (40)If, in addition, F has �nite variane �2, thenk(F � I)k expfa(F � I)gk � 3:6k1=4p1 + �� kae�k � C(k)p�ak : (41)It is well known that eah ompound distribution an be viewed as the distribution of arandom sum of independent random variables. Indeed, let SY = �1+ �2+ : : :+ �Y , where Yis a random variable onentrated on the nonnegative integers, �j has distribution F , and



Two-parametri ompound binomial approximations 15all these random variables are independent. Denoting the distribution of SY by '(F ), weget '(F ) = 1Xk=0P (Y = k)F k:Note that '(I1) is the distribution of Y . Similarly, we de�ne the ompound distribution (F ) = 1Xk=0P ( ~Y = k)F k:Here ~Y is a random variable onentrated on the nonnegative integers. If the distributionsof Y and ~Y are lose, then one an also expet '(F ) and  (F ) to be lose. Let �k(') denotethe kth fatorial umulant of Y , that is, for z = eit with t in a neighborhood of zero,ln� 1Xk=0P (Y = k)zk� = �1(')(z � 1) + �2(')(z � 1)22! + �3(')(z � 1)33! + : : : :Here and heneforth, we assume that all fatorial umulants are �nite. Similarly to theabove, by �k( ), we de�ne the kth fatorial umulant of ~Y . If fatorial umulants of anonnegative integer-valued random variable behave regularly, then its distribution an bereplaed by a muh simpler ompound Poisson law. The following lemma plays a ruialrôle here.Lemma 3.4 Let �k 2 R, k 2 N be suh that, for some �xed A � A0 > 2,j�kj � (k � 1)!Ak�1 �1; �1 > 0; (42)for all k. Set f(A0) = 34A0 ln� A0A0 � 2�� 32 :Then, for all t > f(A0),supF2F  expnt�1(F � I) + 1Xk=2 �kk! (F � I)ko � 1 + f(A0)p2�(t� f(A0)) :Note that, for example, 0:72 < f(3:5) < 0:73.Proof. Let F 2 F . Note that �1 > 0 and, therefore, expft�1(F � I)g 2 F , and its totalvariation is equal to unity. Therefore, taking into aount (35) and Stirling's formula, we



Two-parametri ompound binomial approximations 16obtain expnt�1(F � I) + 1Xk=2 �kk! (F � I)ko� 1 + 1Xr=1 1r!� 1Xk=2 �kk! (F � I)k�2�r(F � I)2r expft�1(F � I)g� 1 + 1Xr=1 1r!� 1Xk=2 j�kjk! 2k�2�r(F � I)2 expn t�1r (F � I)or� 1 + 1Xr=1 (�1f(A0)=3)rr! � 3rt�1e�r = 1 + 1Xr=1 rrr!�f(A0)te �r� 1 + 1Xr=1 1p2�r�f(A0)t �r � 1 + f(A0)p2�(t� f(A0)) ;whih ompletes the proof. �Remark 3.1 Conditions of type (42) are usually assoiated with large deviations and Pois-son approximations (see, for example, [2℄ or [6℄ and the referenes therein).The following proposition is one of the main tools in the subsequent proofs.Proposition 3.1 Let h 2 (0;1) and let, for some �xed s 2 f2; 3; : : : g and A � 3:5,�k(') = �k( ) for all k 2 f1; : : : ; s� 1g:Suppose thatmaxfj�k(')j; j�k( )jg � (k � 1)! �1(')Ak�1 for all k 2 N (�1(') <1): (43)Then, for eah nonnegative integer m, we havek'(F ) �  (F )k � C s+m�1Xk=s j�k(') � �k( )jk! (F � I)k expn15�1(') (F � I)o+ C R (F � I)s+m expn15�1(') (F � I)o; (44)where R = 1Xk=s+m 2k�s�m j�k(') � �k( )jk! � C(s;m) �1(')As+m�1 : (45)Estimate (44) remains true with R given by (45) if the total variation norm k�k is everywherereplaed by the Kolmogorov norm j � j or by onentration seminorm j � jh.



Two-parametri ompound binomial approximations 17Remark 3.2 If m = 0, the �rst sum in the right-hand side of (44) is assumed to be zero.Proof. SetW1 =W1(F;') = 1Xk=2 �k(')k! (F � I)k; W2 =W2(F; ) = 1Xk=2 �k( )k! (F � I)k:We shall prove (44) for the total variation norm only. The remaining bounds for theKolmogorov and onentration norms are shown in the same way. Applying Lemma 3.4with A0 = 3:5, t = 4=5, and �k = ��k(') + (1� �)�k( ), k 2 N, � 2 [0; 1℄, we obtaink'(F ) �  (F )k = k (F )(expfW1 �W2g � I)k=  (F )Z 10 (expf�(W1 �W2)g)0 d�=  (F )Z 10 (W1 �W2) expf�(W1 �W2)gd�� (W1 �W2) expn15�1(')(F � I)o� Z 10  expn45�1(')(F � I) + �W1 + (1� �)W2od�� C (W1 �W2) expn15�1(')(F � I)o� C 1Xk=s (F � I)k expn15�1(')(F � I)o j�k(')� �k( )jk!� C s+m�1Xk=s (F � I)k expn15�1(')(F � I)o j�k(')� �k( )jk!+ C (F � I)s+m expn15�1(')(F � I)o� 1Xk=s+m(kFk+ kIk)k�s�m j�k(')� �k( )jk! :Noting that kIk = kFk = 1, we omplete the proof of (44). Taking into aount (43), weget R � �1(') 1Xk=s+m 2k�s�m+1kAk�1 � C(s;m) �1(')As+m�1 :The last estimate ompletes the proof of the proposition. �



Two-parametri ompound binomial approximations 184 ProofsIn the proofs, we onstantly apply the following fat: if � � 1 and pmax � 1=4, then, inview of (3), ! � pmax � 1=4, and jÆj � 1=2, we see that~p = !1� Æ!=� � 27 : (46)Moreover, ~p = �N � 1n+ 1 > 0: (47)Proof of Theorem 2.1. We apply Proposition 3.1 with'(F ) = nYj=1(qjI + pjF );  (F ) = �~qI + ~pF �N (48)and s = m = 2. Then�k(')k! = (�1)k+1k �k; �k( )k! = (�1)k+1k N ~pk; k 2 N:Note that (43) is satis�ed with �1(') = � and A = 3:5. Moreover, from the de�nition of Nand ~p, we getj! � ~pj = !2jÆj�� Æ! ; j�2 �N ~p2j = �j! � ~pj;j�3 �N ~p3j = �����3� � ~p2��� � �����3� � !2���+ �(! + ~p) j! � ~pj;j�k �N ~pkj � ��� nXj=1 pj(pk�1j � !k�1)���+ �j!k�1 � ~pk�1j� k nXj=1 pjjpj � !j�14�k�2 + k�j! � ~pj�27�k�2; (k 2 N):Applying the last estimate to (45), we obtainR = 1Xk=4 2k�4k j�k �N ~pkj� 1Xk=4 2k�4� nXj=1 pjjpj � !j�14�k�2 + �j! � ~pj�27�k�2�= 421�j! � ~pj+ 18 nXj=1 pjjpj � !j: (49)



Two-parametri ompound binomial approximations 19Consequently,j'(F ) �  (F )j � C� 4Xk=2 ���(F � I)k expn15�(F � I)o��� !2jÆj1� Æ!=�+ ���(F � I)3 expn15�(F � I)o���� ����3� � !2���+ ���(F � I)4 expn15�(F � I)o��� nXj=1 pjjpj � !j�: (50)To omplete the proof of (12), it suÆes to apply Lemma 3.2. For the proof of (14), in (50),the Kolmogorov norm j � j is everywhere replaed by the onentration seminorm j � jh. Forthe shifted ase, in (50), we replae F by IuG and, for k � 2, apply the estimate���(IuG� I)k expn15�(IuG� I)o��� � ���(IuG� I)2 expn 110�(IuG� I)o���� (I1 � I)k�2 expn 110�(I1 � I)o� C(k)�(k�2)=2 ���(IuG� I)2 expn 110�(IuG� I)o���and (36). �Proof of Theorem 2.2. It is easy to hek that, for t 2 R, we have qj+pj bF (t) � 1�2pj >0 and ~q+ ~p bF (t) � 1� 2~p > 0. Therefore, the harateristi funtions of GPB(n; p; F ) andBi(N; ~p; F ) do not exeed expf�( bF (t) � 1)g. Let us assume that h = 0 and denote theleft-hand side of (15) by T . By the inversion formula, similarly to the derivation of (50),we obtainT � 12� Z ��� expf�( bF (t)� 1)g��� nXj=1 ln(1 + pj( bF (t)� 1)) �N ln(1 + ~p( bF (t)� 1))��� dt� 12� Z ��� expf�( bF (t)� 1)g 1Xk=2 j bF (t)� 1jkk j�k �N ~pkjdt� 12� Z ��� expf�( bF (t)� 1)g� !2jÆj1� Æ!=��12 j bF (t)� 1j2 + 528 j bF (t)� 1j3 + 421 j bF (t)� 1j4�+ 13 j bF (t)� 1j3�����3� � !2���+ 18 j bF (t)� 1j4 nXj=1 pjjpj � !j�dt:For the loal estimate, it suÆes to apply (40). Indeed, it an be used that ��1�3�!2 � 0and that, under the present assumptions, 1 � bF (t) � 0. Estimate (15) follows from theobvious fat that, for W 2M onentrated on the integers, jW jh � bh+1jW j0. The proof



Two-parametri ompound binomial approximations 20of (17) is very similar. The only di�erene is to apply Tsaregradskii's inequality (39) andq1� bF (t) � �p2��� sin t2 ���; t 2 R:The proof for the total variation norm follows from the analogue of (50) and from (41). �Proof of Theorems 2.3 and 2.4. Let '(F ) and  (F ) be de�ned as in (48), and let theonditions of Proposition 3.1 be satis�ed. As in the proof of Theorem 2.1, we getj�2(')� �2( )j = �j! � ~pj = !2jÆj1� Æ!=�;j�3(')� �3( )j � C(�j! � ~pj+ j�3 � �!2j);1Xk=4 j�k(') � �k( )jk! 2k � C��j! � ~pj+ nXj=1 pjjpj � !j�:Set W3 = �2(')� �2( )2 (F � I)2 + �3(')� �3( )6 (F � I)3= 12�(~p� !)(F � I)2 + 13(�3 � �~p2)(F � I)3:Thenj'(F ) �  (F )(I +A1(F ))j � j'(F )�  (F ) expfW3gj+ j (F )(expfW3g � I �W3)j+ j (F )(W3 �A1(F ))j: (51)It is easily seen that Proposition 3.1 is appliable to '(F ) and the �nite signed measure (F ) expfW3g with s = 4 and m = 0. Using (35), we obtainj'(F ) �  (F ) expfW3gj � C���(F � I)4 expn15�(F � I)o��� 1Xk=4 j�k(') � �k( )jk! 2k� C���(F � I)2 expn 110�(F � I)o���� !2jÆj�� Æ! + 1� nXj=1 pj jpj � !j�: (52)



Two-parametri ompound binomial approximations 21Let W2 be de�ned as in the proof of Proposition 3.1. Then, applying (34) similarly to theproof of Proposition 3.1, we getj (F )(expfW3g � I �W3)j � ��� (F )Z 10 (1� �)W 23 expf�W3gd� ���� Z 10 (1� �)���W 23 expf�1(')(F � I) +W2 + �W3g��� d�� C���W 23 expn15�(F � I)o���� C�(�2(')� �2( ))2���(F � I)4 expn15�(F � I)o���+ (�3(') � �3( ))2���(F � I)6 expn15�(F � I)o���+ j�2(') � �2( )jj�3(')� �3( )j���(F � I)5 expn15�(F � I)o����� C���(F � I)2 expn 110�(F � I)o����� !2jÆj1� Æ!=��2 1� +��3� � !2�2�: (53)Finally, we havej (F )(W3 �A1(F ))j � C���(F � I)2 expn 110�(F � I)o��� !2jÆj1� Æ!=�: (54)Let F = IuG. Then olleting estimates (51){(54) and applying (36), we omplete the proofof (25). For the proof of (23), we replae the Kolmogorov norm by the total variation normand use (35). For the proof of (30) (resp. (32)), we replae A1(F ) by ~A2(F ) and use (38)(resp. (37)). �Proof of Theorem 2.5. Let us de�ne � 2 F by�fjg = 1~C� ~Nj �!j(1� !) ~N�j ; (j 2 f0; 1; : : : ; b ~Ng);where ~C = b ~NXj=0� ~Nj �!j(1� !) ~N�j :By (8), we see that ~C 2 (0; 1℄. Let us introdue the Stein operator A by(Ag)(j) := 8<: ( ~N � j)!g(j + 1)� j(1� !)g(j); if j 2 f0; 1; : : : ; ng n fb ~Ng;�b ~N(1� !)g(b ~N); if j = b ~N; (55)where g is a real-valued sequene de�ned on the nonnegative integers. For a Borel setA � R, let g = gA be solution of the following Stein equation:(Ag)(j) = I(j 2 A)� �fAg; j 2 f0; 1; : : : ; b ~Ng: (56)



Two-parametri ompound binomial approximations 22Here I(j 2 A) = 1 if j 2 A and I(j 2 A) = 0, otherwise. We assume that g(0) = 0 andg(b ~N+1) = g(b ~N+2) = ::: = 0. Stein's method strongly depends on the properties of g.Employing the results of Barbour et al. ([3℄, pp. 188{190), we obtainsupj�0 jg(j + 1)� g(j)j � 1b ~N!(1 � !) : (57)Note that our bound (57) is slightly worse than 1=( ~N!(1 � !)), whih follows from [3℄pp. 188{190 under the assumption that g(0) = g(1) and g(j) = g(b ~N) for j = b ~N +1; b ~N+ 2 : : : . For our ase, we must take into aount that, in view of (55) and (56),jg(b ~N+ 1)� g(b ~N)j = jg(b ~N)j � 1b ~N(1� !) :We have P (S 2 A)�ABifAg = E (Ag)(S) + (�fAg �ABifAg)+ nXj=b ~N+1P (S = j)(I(j 2 A)� �fAg):Due to the de�nition of ABi, for j 2 f0; 1; : : : ; b ~Ng, we have ABifjg = ~C�(j). Conse-quently, by (8), k��ABik = 2(1 � ~C)= 2 ~N� ~N � 1b ~N �Z !0 yb ~N(1� y) ~N�1�b ~N dy� 2 ~N� ~N � 1b ~N � 1(1� !)1�~Æ Z !0 yb ~N dy� 2!b ~N+1(1� !)1�~Æ : (58)Clearly, we have that��� nXj=b ~N+1P (S = j)(I(j 2 A)� �fAg)��� � P (S � ~N + 1): (59)By Zj , j 2 f1; : : : ; ng, we denote independent Bernoulli random variables with P (Zj = 1) =pj = 1� P (Zj = 0). Obviously, S =Pnj=1 Zj. Let Sj = S � Zj, and lethj = E(g(Sj + 2)� g(Sj + 1)); h = 1� nXj=1 pjhj :



Two-parametri ompound binomial approximations 23We have ~N! = � and EZj g(S) = pjEg(Sj + 1). Therefore,E (Ag)(S) = E (�g(S + 1)� Sg(S)) � !ES(g(S + 1)� g(S))= nXj=1 pj�Eg(S + 1)� Eg(Sj + 1)�� ! nXj=1 pjhj= nXj=1 p2jhj � ! nXj=1 pjhj = nXj=1 pj(pj � !)(hj � h):In [7℄ (see Eq. (4.11) and the subsequent remark), it was proved that��� nXj=1 pj(pj � !)(hj � h)��� � 4 supj jg(j + 1)� g(j)jr e�� �2 (�3 � �!2):Thus, taking into aount (57), we obtain���E(Ag)(S)��� � 4(1� !)(1 � !~Æ=�)r e�� �2��3� � !2�: (60)Now it remains to ollet estimates (58), (59), and (60). Note that some of the onstantsin (33) were doubled beause of the property (1). �Proof of (27) and (28). Let �k = (k � 1)!(�1)k+1N ~pk. Note that, under our assump-tions, ~p � 2=7. Therefore, taking into aount Lemmas 3.4 and 3.2, similarly to the proofof (19) and (20), we obtainsupF2S jak(F )(~qI + ~pF )N j � supF2S j(F � I)k(~qI + ~pF )N j= supF2S ���(F � I)k expn 110�(F � I) + 910�(F � I) + 1Xm=2 �mm! (F � I)mo���� supF2S ���(F � I)k expn 110�(F � I)o���  expn 910�(F � I) + 1Xm=2 �mm! (F � I)mo� C(k) supF2S ���(F � I)k expn 110�(F � I)o��� � C(k)�k (61)and supF2S jbk(F )(~qI + ~pF )N j � C(k)� supF2S j(F � I)k(~qI + ~pF )N j � C(k)�k�1 : (62)This ompletes the proof. �
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