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Abstract

We consider two-parametric compound binomial approximation of the generalized
Poisson binomial distribution. We show that the accuracy of approximation essen-
tially depends on the symmetry or shifting of distributions and construct asymptotic
expansions. For the proofs, we combine the properties of norms with the results for
convolutions of symmetric and shifted distributions. In the lattice case, we use the
characteristic function method. In the case of almost binomial approximation we apply
Stein’s method.
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1 Introduction

1.1 Aim of the paper

The binomial approximation is usually applied to the distribution of the sum of non-
identically distributed Bernoulli random variables. In this paper, we extend the research to

the case of a two-parametric compound binomial approximation to the generalized Poisson
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binomial distribution. We show that the symmetry or suitable shifting of distributions sig-
nificantly increase the accuracy of approximation. For the proofs, we use the properties of
the exponentials of finite signed measures, relations between norms, and known results on
convolutions of symmetric and shifted distributions. In the lattice case, we apply the char-
acteristic function method. The results for the almost binomial approximation are derived

using Stein’s method.

1.2 Notation

Let R and N denote the sets of real numbers and positive integers, respectively. For our
purposes, it is more convenient to formulate all results in terms of distributions or signed
measures rather than in terms of random variables. Let F (resp. S, M) denote the set of
probability distributions (resp. symmetric probability distributions about zero, finite signed
measures) on R. The distribution concentrated at a point u € R is denoted by I,,. Set I = I;.
All products and powers of finite signed measures are defined in the convolution sense. For
W e M,set WO =1. Let W =WT — W~ denote the Hahn-Jordan decomposition of W.
The total variation norm, the Kolmogorov norm, and the Lévy concentration seminorm of

W are defined by

Wl = WHR} + W {R},

W| = sup|W{(—o0,z]}|,
r€R

Wi, = sup|W{[z, z+ h]}|, h € [0, c0),
T€ER

respectively. Note that, for W concentrated on integers, |W |y is the so-called local norm
of W. It is well known that, for VW € M, v € R, and h € [0, 00), we have
Vwir<iviiwl, — VWi VWL VWL < VIR W
ILVI=1VI, |[LVI=IV], [LVy=[V [WI<[W], [W<[W].
Note that, if W{R} = 0, then, as is easily seen, max{|W|, |[W|,} < 27!|W]|. The total

variation distance between V,W € M with the same total mass V{R} = W{R} can be

evaluated in terms of the total variation norm, i.e.,

Ay (V, W) = sup (V = W){A}| = SV —w. (1)
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The supremum in (1) is taken over all Borel sets A C R. The exponential of W € M is

defined by the finite signed measure

o.¢] m

exp(W} = 3

m=0
We denote by C' positive absolute constants that may differ from line to line. Similarly, by

C(-) we denote positive constants depending on the indicated argument only. Let

nGN, pJE[U, 1]7 Qle_pja (jE{l,...,n}),
pmalegljaéc Py, pn‘lln:11<njli1 Py, P = (pla"'apn)a
- A A2
_ k _ _ 2 N
Ak_zpj, (keN, A=), w=-, N_)\—Q, (2)
22 1 A w
N=2"_y N eN 5 <= p= — j=1—p 3
N eN, <3 p=Eg T o/ q p (3)
n
GPB(n, p, F H g I +piF), BN, p, F) = (Gl +pF)", (FeF)

We always assume that p < 1. Note that Bi(N, p, I) and GPB(n, p, I;) are the binomial
and Poisson binomial distributions, respectively. Let S denote a random variable with
distribution GPB(n, p, I1).

The main goal of this paper is to give bounds for the accuracy of approximation of
the generalized Poisson binomial distribution GPB(n, p, F), (F € F) by the compound
binomial law Bi(N, p, F'). Note that we are always interested in the case A > 1, and one
of our main tasks is an establishment of explicit dependence of the estimates on A. By
analogy with the Poisson approximation, we can say that we concentrate our efforts on the

obtaining the ‘magic factors’ A™" for some r > 0 (see Introduction of [3]).

1.3 Known results

In general, there are two different methods for choosing the parameters of the approximating
binomial distribution. The first one assumes the replacement of all p; by their mean. For
the Poisson binomial distribution, such a one-parametric approximation was considered by
Ehm [9] and Roos [14]. The main disadvantage of the one-parametric approach is related

to the fact that only one moment of the approximated distribution can be matched. As a
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typical one-parametric result, we have

2
IGPB(n, p, 1) — Bi(n, 5, )| =/ — 6| < Comin {1, 0+ (4)
Y

1
M1-7) b

where

_ A 22:1(1_7 - pj)?

p= n’ 0 = W;
for a slightly stronger result, see Theorem 3 in [14]. In Remark on p. 259 of [14], it is shown
that € < pmax — Pmin. Therefore, in view of (4), it seems that the one-parametric binomial
approximation is applicable in the case where the p; are close in some sense. Moreover, the
converse holds. Indeed, from Ehm’s [9] results it follows that the total variation norm term
in the left-hand side of (4) is small if and only if € is small. In what follows, whenever we
speak of close p;, we mean that 6 is small. An extension of the one-parametric approach to
the compound binomial case is given in [5].

The second approach is based on matching the first two moments of the Poisson binomial
and binomial distributions. Thus, we have the two-parametric case. Recall that S denotes a
random variable with distribution GPB(n, p, ;). As an approximation, we use the binomial
distribution Bi(N, p, I1). Obviously, both distributions have the same mean A = Np. The
exact matching of the variances is usually not achieved because of the necessity of N € N.
However, the difference between the variances is small. Indeed, since w/A < 1 and |§| < 1/2,
we have

Y Vi =~ ey 5
jz_:lquy‘— PA| = 15073 S S P (5)

As a typical two-parametric result, we have, for 0 < p < 1,

HGPB(TL, p, Il) - Bl(Na ﬁa II)H

<2P(S>N+1)+ g{;’j";ld +4min{1,\/%}<% —w2>}. (6)

Estimate (6) was obtained by Cekanavicius and Vaitkus ([7], Theorem 4.1) and is an im-

provement of previous results of Barbour et al. ([3], p. 190) and Soon [16] if one takes
into account the assumptions of this paper. Note that Soon [16] applied a two-parametric
binomial approximation to a much more general case of the sum of dependent indicators.

Note also that, in all three papers mentioned above, the summand 2P(S > N + 1) was
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overlooked. However, it is often quite small. Indeed, from Bernstein’s inequality it follows

that

P(S>N+1) < exp{—i(i—z —A)} < exp{—%(l —w)}

(see [1], Theorem 1.4.1). Therefore, as a rule, the order of accuracy of approximation in (6)
is determined by the second summand.

It is easy to check that if all p; are equal, then both sides in (6) vanish. Thus, the
two-parametric binomial approximation retains one of the most essential properties of the
one-parametric approximation. Now, let us consider the case where the p; are not close and
uniformly bounded away from 0 and 1. Then the one-parametric binomial approximation
is inaccurate, since the total variation distance between the corresponding distributions is
larger than some absolute constant. On the other hand, if, in addition, p < C < 1, then
the two-parametric binomial approximation is of accuracy Cn~'/2. In the case mentioned,
the classical Berry—Esseen inequality tells us that, for the Kolmogorov norm, one can also
apply the normal approximation with accuracy Cn~'/2. Thus, we conclude that, to some
extent, the two-parametric binomial approximation combines the advantages of both the
one-parametric binomial and normal approximations.

By the properties of the total variation norm (see, for example, [12]),

HGPB(n, p, ) — Bi(N, p, II)H = s HGPB(n, p, F) — Bi(N, f, F)H (7)
Consequently, if treated as a compound binomial approximation, estimate (6) corresponds
to the worst possible case. On the other hand, if F' satisfies certain structural conditions,
one can use them to achieve some improvements in the accuracy. The main purpose of
this paper is an investigation of the changes in the accuracy of the compound binomial
approximation, when F' is a symmetric or suitably shifted distribution.

As already mentioned above, the choice of parameters for the two-parametric approxi-
mation Bi(N, p, I) is based on matching the first two moments. Recall the definition of N,
w, and S. Obviously, Nw = A and Nw(1 —w) = XA — Ay coincide with mean and variance of
S, respectively. However, we cannot take N and w as the binomial parameters, since, due to
the definition of the binomial law, the parameter N must be a positive integer. Therefore,

N is defined as an integer closest to N, and p is chosen to satisfy Np = A. Thompson [17]
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introduced a different approach, replacing the binomial approximation by an almost bino-
mial approximation, which depends directly on N and w. The almost binomial distribution
ABi = ABi(N,w) is defined by

(F)wk(1 = w)NF, ke {01, [N},

ABi{k} = VR ;
R IR S S

Here (]Z) = an:l((l\? —m+1)/m), and | N| € N denotes the integer part of N. One may

ask whether ABi is, indeed, a probability distribution. In fact, it should be clarified that
ABi{|N| +1} > 0. But this easily follows from the identity

i (2)#‘(1 — ) h =1 - x(g”n_l 1) /0 Sy -

k=0
which holds for all m = 0,1,2,..., r € [0, 1), and x € R. In the case z € N, this is a
well-known fact (see [11], p. 110). For general z, (8) remains valid, as one can show by
differentiating the left-hand side with respect to r. Thompson [17, 18] has shown that, for
Ac{o,1,...,|N]},

_ ABi 4 (Ao n—|NJ-1 v
IP(S € A) A13{A}|g1_w<A >+(1_w)(LNJ+1)P(SZLNJ+2). 9)

It should be mentioned that the bound in (9) cannot trivially be viewed as a bound for
d1v(GPB(n, p, 1), ABi). Indeed, the consideration of complements is not sufficient, since
GPB(n, p, I;) and ABi are concentrated on {0,...,n} D {0,..., |N|+1}, respectively, and
since the set A is not allowed to contain | N| +1. Further, estimate (9) is more conservative
than (6) in the sense that it is not comparable to the normal one whenever the p; are not
close. However, as observed by Thompson [18], numerical experiments show that the left-
hand side of (9) seems to be of order C'n~'/2. Therefore, one can expect that the right-hand
side might be improved (see Section 2.4).

Note that there are also some other approaches, different from that of this paper (see,

for example, [10]).
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2 Results

2.1 General distributions

In this section, we consider shifted and symmetric distributions F© € F. By a shifted
distribution, we mean F' = I,G, where G € F and u € R. Then, minimizing the norm
estimate of the difference between GPB(n, p, I,G) and Bi(N, p, I,G) with respect to u,
one can expect some improvement of the accuracy of approximation. Shifted and symmetric
distributions play an important réle in compound Poisson approximations (see, for example,
[1] and [12]). Note that, in the following theorem, we do not assume the finiteness of any

moments.

Theorem 2.1 Let pmax < 1/4 and X > 1. Then we have

sup inf |GPB(n, p, I,G) — Bi(N, p, IuG)‘
GeFueR

< >\5/6{)\1/2 1 — 6w/\ + (7 -w ) + szj‘pj _w} (10)
j=1

C
S N (11)
sup \GPB(n, p, F') — Bi(N, p, F)‘
Fes
c w2‘6‘ >‘3 2 1 "
S VT oo T\~ Vi j|pj — 12
- AQ{I—éw/AJr()\ ‘*’)Jrvgpgpg w} (12)
C
< YA (13)

Moreover, for all F € S and h € (0,00), we have
‘GPB(’H, P, F) - Bl(Na ﬁa F)‘h

C w?|6)| A3 9 1 & 1/9 40/3
= ﬁ{er(y—w)erjZ_lpgpy—w}Qh (Iln@pl + 177 (14)

Here QQy, denotes the Lévy concentration function

Qn = QnrF = ‘exp{%(F - I)Hh.

Remark 2.1 (a) Estimates (11) and (13) are added for demonstration of the accuracy

when p; are not close. In this sense, estimates (10) and (12) are sharper than (11)
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and (13), since, if p; = p for all j, they are equal to zero. Note that, in contrast to

(10)-(13), the bound in (14) depends on F.

(b) The assumption pmax < 1/4 is a consequence of the method of proof.

2.2 Lattice distributions

It seems that, for the total variation norm, estimates of the same accuracy and generality
as in (10)—(13) are unobtainable. However, for a lattice distribution F' with finite second
moment, some analogue of (12) holds. Moreover, in this case, we obtain the estimates for

the Kolmogorov norm and concentration seminorm with explicit constants.

Theorem 2.2 Let pmax < 1/4 and X > 1. Let F € S be concentrated on {£1,+2,...}.

Then, for h € [0,00), we have

) . h+1 w26 0.87 3.69
GPB(’/L, P; F)—BI(N, D, F) b < LA5/2J{1—(5|M|/)\<082+T+7>
A 2.42 <
+ 1.62(73 —w2> + 57 > pilps —w} (15)
j=1
h+1
< C 2\5/2 ¢

If, in addition, F has finite variance o2, then

GPB(n, p, F) — Bi(N, , F oY Wl (N o
|GPB(n. p, F) - Bi( )

IN

A2\ 1-dw/x X
1 n

+ 52 ol - o} (16
=1

< ¢V

~ 77
o[ w?d 0.34 1.27
PB F—B'N~F‘<—7. - =2t
GPB(n. p, F) = Bi(V. 5. F)| < ol iy (030 5+ 5T

A3 o)\ 0.83 ¢
+0.64(7 —w ) +5 ;pjlpj—w} (17)
g
< Cy

Remark 2.2 (a) Taking h < 1, from (15) we get an estimate for the local norm, which
is of better order than one that can be obtained from the more general estimate (14)

(see also [5]). It also contains explicit constants.
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(b) The main advantage of estimate (17), in comparison to (16) and (12), is its explicit
constants. Note that, unlike estimate (12), it contains the undesirable factor o, which
cannot be less than one. Estimate (17) is obtained by a direct application of Tsare-
gradskii’s inequality (see [19] or (39) below) and reveals, to some extent, the limitations

of such an approach.

2.3 Asymptotic expansions

In this section, we introduce asymptotic expansions for the two-parametric compound bi-
nomial approximation. As above, we investigate the cases of shifted and symmetric distri-
butions F'. However, we begin with the general case F' € F. In this section, we assume
that A > 1 and pmax < 1/4, which implies that 0 < p < 2/7 (see (46) and (47) below).
As explained in the introduction, we concentrate ourselves on the ‘magic factors.” The
construction of an asymptotic expansion can, therefore, be outlined as follows. Under the
assumptions above, the accuracy in (6) is at least of order CA~'/2. The task is to choose a
finite signed measure which, when added to the binomial approximation, leads to a remain-
der of order CA\~!. The addition of the next member of the asymptotic expansion gives a
remainder of order CA~3/2, and so on.

Let us begin with the simple identity

fi@u1+4yF) (I + pF) exp{ii F)+bi(F)}, FeF, (18)
oo B
ar) = S\ -y
wr) = S ko yE-r ke
i

Note that aq (F'), b1 (F), and by(F') are zero measures. In what follows, we have to expand the
exponential of signed measure in some power series and then to collect the summands having
the same order of smallness with respect to A. The order of smallness will be determined by
the magnitude of the total variation norm of their convolution with the compound binomial
distribution. The measure ai(F') contains a factor which is bounded by unity. Indeed,

A 2|5
k—1 w?|d] <w2§1,

A skl < T L
p TP S e —pl= o s
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(see (5)). Consequently, by the properties of the total variation norm (see (7)), for £ € N,

we have
sup |lag(F)(GI +pF)V|| < sup ||(F — D)*(GI + pF)"|
FeF FeF
= (L = D*@GI+pn)N)|
1
< C(k)w (19)
Similarly,
5 5 . 5 1
sup [ (F)(@T + 5F)Y | < A sup [(F = D*@T +5F)™)| < C) 1gy- (20)
FeF FeF

The estimates for F' = I; can be obtained, for example, by applying Lemma 4 from [14].
As follows from (19) and (20), the estimate of the norm of the convolution of a(F) with
the compound binomial distribution is comparable to the similar estimate for by o(F).

Therefore, we use the following formal expansion in powers of z:

o

exp{Z(ak(F) + bk+2(F))xk} =T+ A (F)z + Ay(F)z’ + ... .
k=1

Taking into account (19) and (20), one can prove that

sup HAk(F)(qI -l—ﬁF)NH < CO(k) keN. (21)

FeF Ak/27

Thus, as an approximation, we propose to use the finite signed measure
(QI+ﬁF)N<I+ZAk(F)>, se{0,1,...}. (22)
k=1
Note that, by the formula of Fad di Bruno (see, for example, [13], pp. 135-136),
1
A1 (F) = bs(F), AQ(F)=a2(F)+b4(F)+§b§(F),
* k 1
A4 =Y T] lm—!(am(F) + b2 (F)™, kel
m=1

Here > " means the summation over all nonnegative integer solutions /1, ..., of the equa-
tion Iy + 2ls + - + kl, = k.
If pmin is bounded away from zero, then A ~ Cn, and expansion (22) can be written

as a sum of signed measures, the norms of which, due to (21), are bounded from above
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by powers of n='/2. For the case F = I, and the Kolmogorov norm, a similar result
can be obtained by the Edgeworth expansion, which confirms the already noted similarity
between the two-parametric binomial approximation and the normal one. Remarkably, (22)
has certain advantages in comparison with the Edgeworth expansion. No continuity terms
are needed for it and, unlike the Edgeworth expansion, it can be easily used for shifted

distributions.

Theorem 2.3 Let pmax < 1/4 and A > 1. Then we have
sup HGPB(n, p, F) = Bi(N, j, F)(I + A, (F)) H

FeF
C( w?d P I
i{m+<7“”>+x;pﬂ'pﬂ‘“} )

¢
A

IN

(24)

sup inf |GPB(n, p, 1,G) — Bi(N, §, IG) (I + A, (1,G)) ‘

GeF u€R
C w2 |6 PR R R
= A4/3{1—5w/x+<7_‘”> +X];pj|pj_w|} (25)

< C
S vl

(26)

Comparing (6) with (11) and (24) with (26), we see that, in both cases, shifting adds a
‘magic factor’ A\~1/3,
Let us consider the symmetric case F' € §. We use the same principles of construction

as above. However, we switch to the Kolmogorov norm and use the following estimates:

1
sup [a (F) (@l +5F)"| < C(k) 55 (27)
FeS A
- - 1
sup [by(F)@l +6F)"| < C() g keN. (28)
€S

the proof of which can be found below (see (61) and (62)). Here, as follows from (27) and
(28), the estimate of the norm of the convolution of a;(F') with the compound binomial dis-
tribution is comparable to the similar estimate for by 1(F). Therefore, we use the following
formal expansion in powers of z:

exp{Z(ak(F) + bk+1(F))xk} =T+ Ay(F)2? + As(F)a® + ... |
k=2
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Taking into account (27) and (28), one can prove that

. o 1
sup Ak(F>(qI+pF>N\ <O(k) 55, ke
€S

Thus, in the symmetric case, as an approximation, we propose to use the finite signed

measure ,
(GI + pF)N (I +Y Ak(F)>, s €N (29)
k=2
Note that As(F) = ag(F) + b3(F) and that, more generally,
k
ar =3 11 i(an(P) +bnia (P, ke (23,00}
m=
..., I of the

Here > ™ means the summation over all nonnegative integer solutions lo,

equation 2ls 4+ - -+ + kl = k. In what follows, we present results for the approximation by

the signed measure
. ~ i _ S\ N A - 2 A(A3 2 3

Bi(N, p,F)(I + Ay(F)) = (g + pF)" (I — §(w —p)(F —1)* + Il e (F-1)°).

Theorem 2.4 Let pmax < 1/4 and A > 1. Then we have

sup |GPB(n, p, F) — Bi(N, §, F)(I + 212(F))‘

FeS
C( w?d 1/ L\ 1¢
< sy ) +ij::1pfpﬂ_“’} (30)
< bR (31)

Moreover, for all F € S and h € (0,00), we have

‘GPB(n, p, F) = Bi(N, p, F)(I + A5(F)) ‘h

C w2|(5| 1 )\3 2 2 1 " 1/13 959
— ¢ ' [ _ e 1 1 /13. 9
= >\3{1—6w/)\ >\<>\ “’) +A;pypg wl} B ([InQpl+1) (32)

Here QQp, is the same as in Theorem 2.1.

We should note that, in the case of lattice distributions F', similar results are possible but,

because of lack of space, we omit them.
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2.4 Almost Binomial approximation

As noted by Thompson [18], estimate (9) does not reflect the ‘normal aspect’ of the two-
parametric approximation correctly and, in certain situations, one should expect the ap-
proximation to be of order O(n*1/2). This conjecture is also supported by the similarity of
the almost binomial distribution to the distribution Bi(N, p, I;) and estimate (6). Below
we present the proof that Thompson’s conjecture is correct. We recall that the random
variable S has the distribution GPB(n, p, I1). Let & denote the fractional part of N, that

is N=|N|+60<0d<1.

Theorem 2.5 If 0 < w < 1, then
2 wlNI+1

< 2P(S>N+1)+ ——
( ) 1 _w)is

T w)(18— Wb /) \/E(% - wQ)- (33)

This estimate indeed reflects the ‘normal aspect’ correctly, since, for p; uniformly bounded

HGPB(n, p, I\) — ABi

away from 0 and 1/4, its accuracy is at least of order O(n~/2). However, it must be noted
that the constants in (33) are larger than those conjectured by Thompson [18].
3 Auxiliary results

We begin with exponential smoothing estimates.

Lemma 3.1 Let F € F, a € (0,00), and k € N. Then we have

I(F ~ Dexpla(F -1} < /=, (34)
I(F — 1 expla(F =D} < -, (3)
. 1
ég]fR\(IuF — DFexp{a(I,F - 1)} < C(k) R D) (36)

Proof. For the proof of (34), (35), and (36), see [8], [15] Lemma 3, [4] Theorem 3.1,

respectively. O
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Lemma 3.2 Let F € S, a,h € (0,00), and let k € N. Then

‘(F B I)k exp{a(F _ I)}‘h < C(k) a_lk Q}ll/(2k+1)(| In Qh‘ + 1)6k(k+1)/(2k+1)’ (37)
(F = DFexpla(F —D}| < O . (39)

Here
a

Qn = Qnar = ‘eXp{4(F—I)H )

h
Proof. Estimate (37) is a partial case of Theorem 1.1 from [4]. Note that, in [4], there
is a misprint in the power of the last factor (compare the statement of the theorem in the
paper with its equation (4.25)). Estimate (38) follows from (37). O
In what follows, we need the Fourier transform W(t), t € R of a finite signed measure
W € M. It is defined by W(t) = [ € W{dz}, where i denotes the complex unit. It is
easy to check that, for VW € M and a,t € R,

exp{WH(t) = exp{W (1)}, VW () =VOW(), L(t)=e" Tt =1

Note that if W € M is concentrated on the integers, then the well-known Tsaregradskii
[19] inequality establishes the relation between |IW| and W(t) in the following way:
1 ("Wt
W) < —/ LG/ (39)
A | . |sin(t/2)]
The following lemma deals with the exponential smoothing inequalities for symmetric lattice

distributions and was proved in [5].

Lemma 3.3 Let F € S be concentrated on {£1,£2,...}, and let a,v € (0,00) and k € N.
Then

| KRN u+1/2>“+1/2

(1 = B expla(F(t) - 1)} di < 2( (40)

2 | . ae

If, in addition, F has finite variance o2, then

k k
|(F = I)* exp{a(F — I)}| < 3.6k"*V1+ U(E) < C(k)g. (41)
It is well known that each compound distribution can be viewed as the distribution of a
random sum of independent random variables. Indeed, let Sy = &1+ &+ ...+ &y, where Y

is a random variable concentrated on the nonnegative integers, §; has distribution F', and
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all these random variables are independent. Denoting the distribution of Sy by ¢(F'), we
get
o0
p(F) =Y _ P(Y =k)F".
k=0

Note that ¢(Iy) is the distribution of Y. Similarly, we define the compound distribution

Y(F) = ip(ff = k)F*,

k=0
Here Y is a random variable concentrated on the nonnegative integers. If the distributions
of Y and Y are close, then one can also expect ¢(F) and 9 (F) to be close. Let I'; () denote
the kth factorial cumulant of Y, that is, for z = e!* with ¢ in a neighborhood of zero,

(= —1)°
2l

(z = 1)°
3!

1n<ZP(Y:k)zk> =T1(p)(z — 1) + Ta(p) +T'3(p) +....

Here and henceforth, we assume that all factorial cumulants are finite. Similarly to the
above, by T'\(1), we define the kth factorial cumulant of V. If factorial cumulants of a
nonnegative integer-valued random variable behave regularly, then its distribution can be
replaced by a much simpler compound Poisson law. The following lemma plays a crucial

role here.

Lemma 3.4 Let Ty € R, k € N be such that, for some fized A > Ay > 2,

(k — 1)!

ITx| < 1

Fla Fl > 07 (42)

for all k. Set

3 Ag 3
f(do) = Ao (1 705) - 5

Then, for all t > f(Ap),
o0 T,

F(A
g [exe{e (=0 4 30 qr - nfy <1 vy

Note that, for example, 0.72 < f(3.5) < 0.73.
Proof. Let F' € F. Note that I'; > 0 and, therefore, exp{tI'1(F — I)} € F, and its total

variation is equal to unity. Therefore, taking into account (35) and Stirling’s formula, we
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obtain

Hexp{tf‘l(F—I) ZE’T(F 1) }H

1
g1+—
0

(Zi’f(F D) (F — 1) exp{iTy (F ~ 1)}
k=

o555 B o e M- )

M8 ||M8 iM8

(T'1f(A40)/3)"  3r \" _ — 1" ( f(A0)\
- 1+T:1 7! (tF1e> _1+z::ﬁ( te )
— L f(Ao)yr f (Ao)
<SR ) S ey
which completes the proof. O

Remark 3.1 Conditions of type (42) are usually associated with large deviations and Pois-

son approximations (see, for example, [2] or [6] and the references therein).

The following proposition is one of the main tools in the subsequent proofs.

Proposition 3.1 Let h € (0,00) and let, for some fizred s € {2,3,...} and A > 3.5,
Tr(p) = Tk(v) forallk e {l,...,s —1}.

Suppose that

kE—-1)!T

max(Te(o) e} < B0 ke (i) <o) (@3)

Then, for each monnegative integer m, we have
s+m—1
Ti(y rk 1
lotr) (Rl < ¢ % | D p— npexp{ i) (7 - 1}
s+m 1
-I-CRH(F—I) exp{ Ti(¢) (F = D (44)
where
o
h—s—m k(@) = Tk(¥)] T'i(p)
k=s4+m

Estimate (44) remains true with R given by (45) if the total variation norm ||-| is everywhere

replaced by the Kolmogorov norm | - | or by concentration seminorm |- |p.
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Remark 3.2 If m = 0, the first sum in the right-hand side of (44) is assumed to be zero.

Proof. Set

=T =T
Wi =Wi(F,p) = ZﬁfF.l mzmmszﬁW
k=2 k=2 )

(F — 1),

We shall prove (44) for the total variation norm only. The remaining bounds for the
Kolmogorov and concentration norms are shown in the same way. Applying Lemma 3.4

with Ag = 3.5, t =4/5, and I'y, = 7T';(¢) + (1 — 7)Tk (%), k € N, 7 € [0, 1], we obtain

lo(F) —p(F)| = I1$(F)(exp{W) — Wa} — 1]
1
= () / (exp{r (W1 — Wa)})' dr

1
_ ¢(F)/U (Wi — Wy) exp{r (W1 — W))} dr

< |om - wy e {rieF - D}
! 4
X/o Hexp{gf‘l(go)(F—I)—l—TWl—i-(l—T)WQ}HdT
< o - m)ep{zri@)F - 0}
- CgH(F—I)kexp{%rl(‘P)(F—I)}H Ti(p) ;!Fk(«/))
<0 Zi |7~ 1t exp{ i (p(F - )| FeEL TuD)

+ 0|7 - e SR - 1|

Y (IF| A+ | T)pE Tk () I;ka)l _

k=s+m

Noting that || I|| = || F|| = 1, we complete the proof of (44). Taking into account (43), we

get

o k—s—m-+1

2 Ty (p

R<Tip) Y 2 < Oam) i@
k=s+m

The last estimate completes the proof of the proposition. O
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4 Proofs

In the proofs, we constantly apply the following fact: if A > 1 and pmax < 1/4, then, in
view of (3), w < pmax < 1/4, and [d| < 1/2, we see that

w 2
p— <= 46
PET50/x =7 (46)
Moreover,
A 1
p= — > > 0. 47
P=N=n+1 (47)
Proof of Theorem 2.1. We apply Proposition 3.1 with
n
- AN
=[[(wT+pF),  @(F) = (al +5F) (48)
j=1

and s = m = 2. Then

Lile) _ (~DH!
k! k

La(9) _ (~D!
k! k

NpF, keN.

Note that (43) is satisfied with T'y(¢) = X and A = 3.5. Moreover, from the definition of N
and p, we get

w?|d]
-p = Ao — Np?| = Mw — p

X =N = A5 -

B> g)\‘%—uﬂ‘ﬁ-)\(w-l-ﬁ) w — P,

n
p\k o Nﬁk‘ < ‘ij(p;?—l B wkfl)‘ + >\|wk71 _ﬁk71|
i—1

n 1 k—2 9 k—2
< k D — - EXw —p|| = , k € N).
< K Ynln d(3) +mw-al(2) L wewm
Applying the last estimate to (45), we obtain
o 2k 4
R = Z—\Ak—N |
k 4
k—2 2\ k=2
< 9k—4 - (2
S (S o) o))
k=4
S e (49)

j=1
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Consequently,

o(F) — $(F)| < C{ 24: ‘(F o exp{é)\(F - 1)}‘ %
ﬁ_uﬁ‘

exp{ -n} Zmpj b

To complete the proof of (12), it suffices to apply Lemma 3.2. For the proof of (14), in (50),

the Kolmogorov norm | - | is everywhere replaced by the concentration seminorm | - |;. For

the shifted case, in (50), we replace F' by I,,G and, for k > 2, apply the estimate

(IuG—I)kexp{%)\(IuG—I)H < ‘(IuG—I) exp{lOA(IuG—I)H
[l =0 eo{iprn -0}
< %‘(IUG—I) exp{lo)\(IG n}|
and (36). 0

Proof of Theorem 2.2. It is easy to check that, for £ € R, we have g; -I-pjﬁ(t) >1-2p; >
0 and ¢ —i—ﬁﬁ(t) > 1—2p > 0. Therefore, the characteristic functions of GPB(n, p, F)) and
Bi(N, p, F)) do not exceed exp{)\(ﬁ(t) —1)}. Let us assume that h = 0 and denote the
left-hand side of (15) by T. By the inversion formula, similarly to the derivation of (50),

we obtain

T < 2 [ exp0F() —1}‘Zlnl-l—p](ﬁ()—1))—Nln(l-l—ﬁ(ﬁ(t)—l))‘dt

- 2m . =

17 - = |F(t)
< o 7Wexp{)\F kz \Ak—N klat

1 " ol 2|(5| 1 2 55 3 4 5 4
< — (F(t -1 —|F(t) -1 —|F(t) — 1
< 4 _Wexp{A - N (W( F(t) 17+ 2B (1) 1P + LB (1) -1

i 3 .
L) - 1|3A\7 ~ |+ HEO - 1Y pyl ~ul
j=1

For the local estimate, it suffices to apply (40). Indeed, it can be used that A=Az —w? >0
and that, under the present assumptions, 1 — ﬁ(t) > 0. Estimate (15) follows from the
obvious fact that, for W € M concentrated on the integers, |W|;, < |h+1||W|y. The proof
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of (17) is very similar. The only difference is to apply Tsaregradskii’s inequality (39) and

1- ()<o\/_sm teR

The proof for the total variation norm follows from the analogue of (50) and from (41). O
Proof of Theorems 2.3 and 2.4. Let ¢(F) and 9(F) be defined as in (48), and let the

conditions of Proposition 3.1 be satisfied. As in the proof of Theorem 2.1, we get

r T _ Aw—p = 2D
IT2(¢) —Ta(y)| = \W—p\—ma
T3 )—Fg(w)\ < C(w=5| + A3 = 2w?)),
Z|Fk )|2k < C(M = . on.
A w p|+zp]‘pj wl ).
j=1
Set
W, = FQ(‘P);F2(¢)(F_I)2_I_FB(SD)EF:s(?/))(F_I)
= M- )P = D2+ 50— NP)(F - 1),
Then

[(F) = (F)(T + Ai(F))| < [o(F) = ¢(F) exp{Ws}| + [¢(F)(exp{W3} — T — W3)]
+ [Y(F) (W3 — A1 (F))]. (51)

It is easily seen that Proposition 3.1 is applicable to ¢(F) and the finite signed measure
P(F)exp{Ws3} with s =4 and m = 0. Using (35), we obtain

o(F) — 4(F )eXp{Wg}\<C‘F 1) eXp{ (F - IHZFk A1

< ol - e - (3L + Zmpj w|) (52)
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Let W5 be defined as in the proof of Proposition 3.1. Then, applying (34) similarly to the

proof of Proposition 3.1, we get

1
BE)exp{Wa} — = W)| < [0(F) [ (1= 1)WE exp{rWa} dr

. 0
< /0(1—7)

C‘W:,; exp{5)\(F 1)}‘

W2 exp{T1(¢)(F — I) + Wa + TW?,}‘ ar

IA

< ofCate) - ra)?|(F - D' exp{ g - D}
+ (Dalp) ~ T3] (F ~ 1 exp{ gA(F - D)}

+ITa(p) — Do) [Ts() ~ To() | (F — 1) exp{ AF 1)}
< C (F—I)Qexp{f—OA(F—I)}{<%>2§+ <¥—w2>2}. (53)
Finally, we have
W = ()] < (P - 1 e foae - 0} 50 (54)

Let F = I,G. Then collecting estimates (51)—(54) and applying (36), we complete the proof
of (25). For the proof of (23), we replace the Kolmogorov norm by the total variation norm
and use (35). For the proof of (30) (resp. (32)), we replace A;(F) by As(F) and use (38)
(resp. (37)). O
Proof of Theorem 2.5. Let us define u € F by
. 1 (/N\ . o 5
uit =z (3 )=V, e o1 L),
c\J
where i
IN] & o
C’:Z < >w] (1 —w)N ™1,
j=
By (8), we see that C € (0, 1]. Let us introduce the Stein operator A by
(Ag)(5) i (N —wgG +1) — (1 —w)g(y),  ifj€{0,1,...,n}\{{N]},
—|NJ(1 = w)g([N)), it j = [N,

where ¢ is a real-valued sequence defined on the nonnegative integers. For a Borel set

(55)

A C TR, let g = g4 be solution of the following Stein equation:

(Ag)(j) =1(j € A) — u{A},  je{0,1,....|N]}. (56)
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Here I(j € A) =1if j € A and [(j € A) = 0, otherwise. We assume that g(0) = 0 and

g(|IN]+1)=g(|[N]+2)=..=0. Stein’s method strongly depends on the properties of g.

Employing the results of Barbour et al. ([3], pp. 188-190), we obtain

. . 1
i‘;lg g(7+1) —g()| < m (57)

Note that our bound (57) is slightly worse than 1/(Nw(1 — w)), which follows from [3]
pp. 188-190 under the assumption that g(0) = g(1) and g(j) = g(|N|) for j = [N]| +

1,|N] +2.... For our case, we must take into account that, in view of (55) and (56),

9N +1) = g(LN))] = lg(1¥ )] € =———

We have

P(S e A) — ABi{A} = E(Ag)(S) + (u{A} — ABi{A})
+ P(5=j)(I(j € A) — n{A}).
J=IN]+1
Due to the definition of ABi, for j € {0,1,...,{Z\~/'J}, we have ABi{j} = Cu(j). Conse-

quently, by (8),

lu—ABi| = 2(1-C)

= o () [

(Mo L [T
: 2N< N )u_w)l—S/o v
2 wlNI+1
T (58)
Clearly, we have that
| > PS =i € A) - p{A}) < P(S 2N +1), (59)

J=IN]+1
By Z;, j € {1,...,n}, we denote independent Bernoulli random variables with P(Z; = 1) =
p;j=1- P(Zj = 0). Obviously, S = Z?:l Zj. Let S; =S — Z;, and let

_ 1<
hj =E(g(S; +2) —g(S; +1)),  h= > pjhy.
J=1
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We have Nw = X and EZ;¢(S) = p;Eg(S; + 1). Therefore,

E(Ag)(S) = E(Xg(S +1) —5g(S)) — wES(9(S +1) — g(S5))
= Zm(Eg(S-I—l) — Eg(S; -I-l)) —prjh]
j=1

7=1
= Zp?hj - prjhj = ij(pj - w)(hj - E)
j=1 j=1 j=1

In [7] (see Eq. (4.11) and the subsequent remark), it was proved that

\ij )by = 1) < 45plg(i +1) = 90y [ 55 0 = Xe).

Thus, taking into account (57), we obtain

[E(Ag)(8)| < (1_&))(;*_@”)\“_‘3&(%_w2>. (60)

Now it remains to collect estimates (58), (59), and (60). Note that some of the constants

in (33) were doubled because of the property (1). O
Proof of (27) and (28). Let I'y = (k — 1)!/(—1)**!Np*. Note that, under our assump-
tions, p < 2/7. Therefore, taking into account Lemmas 3.4 and 3.2, similarly to the proof
of (19) and (20), we obtain

sup |a(F) (I + pF)N| < sup |[(F — D)*(GI + pF)"|

Fes FeS
o
- ;gg‘(F—I) exp{lo)\(F I+ —AF 1) ZE’" - H
- 1o o} ol e+ 5 B )|
< C(k);lég‘(F—I)kexp{%)\(F—I)HgC;f) (61)
and
sup [0 (1)@ + )| < O sup |(F — DL+ 1) < S0 (62)
FeS FeS

This completes the proof. O
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