2. Übung zur Wahrscheinlichkeitstheorie I

Gruppenübungen

G3: Es seien $(\Omega_1, \mathcal{S}_1)$ und $(\Omega_2, \mathcal{S}_2)$ Messräume. Zeigen Sie:

$$\mathcal{S}_1 \times \Omega_2 := \{A_1 \times \Omega_2 : A_1 \in \mathcal{S}_1\} \text{ und } \Omega_1 \times \mathcal{S}_2 := (\Omega_1 \times A_2 : A_2 \in \mathcal{S}_2\}$$

sind σ -Algebren auf $\Omega_1 \times \Omega_2$.

G4: Es sei Ω eine Menge und $\{Z_{\alpha}: \alpha \in I\}$ eine Zerlegung von Ω (d.h. $\bigcup_{\alpha \in I} Z_{\alpha} = \Omega$ und Z_{α} sind paarweise disjunkt). Überlegen Sie sich, dass gilt

$$\sigma\Big(\{Z_\alpha:\alpha\in I\}\Big)=\Big\{\bigcup_{\alpha\in J}Z_\alpha:J\subset I,\ J\ \text{oder}\ I\setminus J\ \text{abz\"{a}hlbar}\Big\}$$

Hausübungen

H4: Es seien $(\Omega_1, \mathcal{S}_1)$ und $(\Omega_2, \mathcal{S}_2)$ Messräume und $\mathcal{S}_1 \times \Omega_2$, $\Omega_1 \times \mathcal{S}_2$ wie in G3. Zeigen Sie:

- (i) $(S_1 \times \Omega_2) \cup (\Omega_1 \times S_2)$ ist ein Dynkin-System.
- (ii) Existieren $A_j \in \mathcal{S}_j$ mit $\emptyset \neq A_j \neq \Omega_j$ (j = 1, 2), so ist $(\mathcal{S}_1 \times \Omega_2) \cup (\Omega_1 \times \mathcal{S}_2)$ keine σ -Algebra.

H5: Es sei Ω eine Menge, und es seien $W_j \subset \Omega$ $(j \in \mathbb{N})$. Für $J \subset \mathbb{N}$ setzen wir

$$Z_J := \bigcap_{j \in J} W_j \setminus \bigcup_{j \in \mathbb{N} \setminus J} W_j$$

.

- a) Zeigen Sie:
 - (i) $\{Z_J: J \subset \mathbb{N}\}$ ist eine Zerlegung von Ω .
 - (ii) Für alle $j \in \mathbb{N}$ gilt $W_j = \bigcup_{J:j \in J} Z_J$.
- b) Was ist $\{Z_J : J \subset \mathbb{N}\}$ im Falle $\Omega = \mathbb{R}$ und $\{W_j : j \in \mathbb{N}\} = \mathcal{D}_1$?

H6: Überlegen Sie sich, dass jede unendliche σ -Algebra überabzählbar ist.