1. Übung zur Wahrscheinlichkeitstheorie I

Gruppenübungen

- G1: Es seien (Ω, \mathcal{S}, P) ein Wahrscheinlichkeitsraum und $(\mathcal{S}_n)_{n \in \mathbb{N}}$ eine unabhängige Folge von σ -Algebren $\mathcal{S}_n \subset \mathcal{S}$. Zeigen Sie: Ist $X: (\Omega, \mathcal{T}_\infty) \to (\mathbb{R}, \mathcal{B})$ messbar, so existiert ein $c \in \mathbb{R}$ mit P(X = c) = 1.
- G2: Es seien ζ das Zählmaß auf $\operatorname{Pot}(\mathbb{Z})$ und

$$h_{\lambda}(k) := \begin{cases} e^{-\lambda} \lambda^k / k!, & k \ge 0 \\ 0, & k < 0 \end{cases}$$

die Zähldichte der Poisson-Verteilung mit Parameter $\lambda > 0$.

- a) Bestimmen Sie für $\lambda, \mu > 0$ die Zähldichte von $(h_{\lambda} \cdot \zeta) * (h_{\mu} \cdot \zeta)$.
- b) Es seien X_1,\ldots,X_n unabhängig und Poisson-verteilt mit Parameter $\lambda>0.$ Was ist die Verteilung von $\sum\limits_{j=1}^n X_j$?

Hausübungen

- H1: Finden Sie zwei Zufallsvariablen $X, Y \in \mathcal{L}_2(P)$, wobei (Ω, \mathcal{S}, P) ein geeigneter Wahrscheinlichkeitsraum ist, die zwar unkorreliert, aber nicht unabhängig sind.
- H2: Es sei (Ω, \mathcal{S}, P) ein Wahrscheinlichkeitsraum, und es sei (A_n) eine Folge in \mathcal{S} . Zeigen Sie:

$$P(\liminf A_n) \le \liminf P(A_n) \le \limsup P(A_n) \le P(\limsup A_n)$$
.

H3: a) Für $f, g \in \mathcal{L}_1(\lambda^m)$ sei $\varphi : \mathbb{R}^{2m} \to \mathbb{R}$ definiert durch

$$\varphi(x,y) = f(x-y)g(y) \qquad (x,y \in \mathbb{R}^m).$$

Zeigen Sie:

- (i) φ ist λ^{2m} -integrierbar mit $\int |\varphi| d\lambda^{2m} = \int |f| d\lambda^m \cdot \int |g| d\lambda^m$.
- (ii) Es existiert eine λ^m -Nullmenge N so, dass

$$(f * g)(x) := \int f(x - y)g(y)d\lambda^{m}(y)$$

für alle $x \in N^c$ definiert ist, und es gilt $\int |f * g| d\lambda^m \leq \int |f| d\lambda^m \cdot \int |g| d\lambda^m$ im Sinne von (7.4).

b) Geben Sie ein Beispiel zweier Funktionen $f, g \in \mathcal{M}^+(\mathbb{R}, \mathcal{B})$ mit $\int f d\lambda = \int g d\lambda = 1$ und $(f * g)(0) = \infty$.