1. Übung Funktionalanalysis und partielle Differenzialgleichungen

Abgabe: Dienstag, 03.11.2009, vor der Übung

H1: Es sei $(X, \|\cdot\|)$ ein Banachraum, und es sei $L \subset X$ ein Teilraum. Zeigen Sie: L ist genau dann abgeschlossen, wenn $(L, \|\cdot\|_{|L})$ ein Banachraum ist.

H2: a) Zeigen Sie, dass c_0 und c abgeschlossene Teilräume von $(\ell_{\infty}, \|\cdot\|_{\infty})$ sind.

b) Es sei $e^{(j)} \in \mathbb{K}^{\mathbb{N}}$ definiert durch

$$e_k^{(j)} := \begin{cases} 1, & \text{falls } j = k \\ 0, & \text{sonst} \end{cases}$$

(j-ter Einheitsvektor in $\mathbb{K}^{\mathbb{N}}$). Zeigen Sie, dass

$$a := \operatorname{linspan} \{ e^{(j)} : j \in \mathbb{N} \}$$

nicht abgeschlossen in $(\ell_{\infty}, \|\cdot\|_{\infty})$ ist.

H3: Es seien (X,d) ein metrischer Raum und $M\subset X.$ Zeigen Sie

- a) M ist genau dann relativ kompakt, wenn \overline{M} kompakt ist.
- b) Ist M relativ kompakt, so ist M auch präkompakt.