SS 2007 02.05.2007

3. Übung zur Funktionentheorie

Abgabe: Dienstag, 08.05.2007, vor der Vorlesung.

H5: a) Es sei $G \subset \mathbb{C}$ ein Gebiet, und es sei $g \in H(G)$ mit $g(z) \neq 0$ für alle $z \in G$. Zeigen Sie: Für $f \in H(G)$ sind äquivalent:

(i)
$$e^f = g$$
,

(ii)
$$f' = g'/g$$
 und $e^{f(z_0)} = g(z_0)$ für ein $z_0 \in G$.

b) Zeigen Sie: Es existiert kein $f \in H(\mathbb{C} \setminus \{0\})$ mit $e^{f(z)} = z$ $(z \neq 0)$.

H6: Es sei $\gamma:=[-\pi,\pi]\to\mathbb{C}$ ein geschlossener Pfad mit Polarkoordinatendarstellung $\gamma(t)=\rho(t)e^{it}\,(t\in[-\pi,\pi])$. Zeigen Sie:

$$\frac{1}{2i} \int_{\gamma} \overline{z} dz = \frac{1}{2} \int_{-\pi}^{\pi} \rho^{2}(t) dt = \lambda^{2}(K),$$

wobe
i $K=\{re^{it}: 0 \leq r \leq \rho(t), t \in [-\pi,\pi]\}.$