4. Übung zur Vorlesung Fourier-Transformationen und Fourier-Reihen

A11: Es seien $c = (c_k) \in \ell_1(\mathbb{Z}) = L_1(\mathbb{Z}, \operatorname{Pot}(\mathbb{Z}), \sigma)$ und $c^{\vee}(z) = \sum_{\nu = -\infty}^{\infty} c_{\nu} z^{\nu} = \int c(n) z^n \, d\sigma(n)$ für $z \in \mathbb{S}$. Zeigen Sie:

a)
$$c^{\vee} \in C(\mathbb{S})$$
 und $||c^{\vee}||_{\infty} \le ||c||_1 = \sum_{\nu \in \mathbb{Z}} |c_{\nu}|.$

b) Sind
$$a = (a_k), b = (b_k) \in \ell_1(\mathbb{Z})$$
 so gilt für $a * b$, definiert durch $(a * b)_k := \sum_{j=-\infty}^{\infty} a_j b_{k-j}$,

(i)
$$a * b \in \ell_1(\mathbb{Z})$$
 und $||a * b||_1 \le ||a||_1 ||b||_1$.

(ii)
$$(a * b)^{\vee} = a^{\vee} b^{\vee}$$
.

A12: Beweisen Sie:

a)
$$||D_n||_1 \le 3 + \ln n$$
.

b) Für
$$f \in C(\mathbb{S})$$
 gilt $||f - S_n f||_{\infty} \le (4 + \ln n) \inf_{P \in \mathcal{T}_n} ||f - P||_{\infty}$.

A13: Es seien (X, d_X) ein vollständiger metrischer Raum, (Y, d_Y) ein metrischer Raum, $f: X \to Y$ stetig und $M \subset X$ dicht in X. Beweisen Sie: Ist $f|_M$ eine Isometrie, also $d_Y(f(x), f(y)) = d_X(x, y)$ für $x, y \in M$, und ist f(M) dicht in Y, so ist f surjektiv.

A14: Nutzen Sie die Parsevalsche Gleichung, um den Wert der Reihe $\sum_{\nu=1}^{\infty} 1/\nu^4$ zu berechnen.