6. Übung zur Vorlesung Dynamische Systeme Besprechung am Mittwoch, den 29. Juni 2016

A21: Es seien $A = \{0, 1\}$ und $\sigma_A : \Sigma_A \to \Sigma_A$ der Linksshift (siehe Definition 2.20).

- a) Finden Sie überabzählbar viele nichtrekurrente $s = (s_k)_{k=0}^{\infty} \in \Sigma_A$.
- b) Überlegen Sie sich, dass die Winkelverdopplung $(\sigma_{\mathbb{S}}, \mathbb{S})$ und der Linksshift (σ_A, Σ_A) halbkonjugiert vermittels $h : \Sigma_A \to \mathbb{S}$, definiert durch

$$h(s) = \exp\left(2\pi i \sum_{k=0}^{\infty} \frac{s_k}{2^{k+1}}\right) \quad (s \in \Sigma_A),$$

sind.

- A22: Es seien (X, d) ein kompakter metrischer Raum und μ ein endliches Maß auf \mathscr{B}_X . Zeigen Sie: Ist $\phi: X \to X$ stetig und maßerhaltend, so existiert eine Nullmenge N so, dass $(S_n f/n)$ für alle $f \in C(X)$ punktweise auf $X \setminus N$ konvergiert.
- A23: Es seien (X, d) ein kompakter metrischer Raum und $\phi: X \to X$ stetig. Zeigen Sie: Es existiert ein $p \in X$ so, dass $(S_n f(p)/n)$ für alle $f \in C(X)$ konvergiert. **Hinweis:** Verwenden Sie A22.
- A24: Es seien (X, \mathscr{S}, μ) ein Wahrscheinlichkeitsraum und $\phi: X \to X$ maßerhaltend. Überlegen Sie sich, dass ϕ genau dann ergodisch ist, wenn $\mu(A) \in \{0,1\}$ für alle invarianten $A \in \mathscr{S}$ gilt.