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Abstract

It is known that, generically, Taylor series of functions holomorphic
in the unit disc turn out to be universal series outside of the unit disc
and in particular on the unit circle. Due to classical and recent results
on the boundary behaviour of Taylor series, for functions in Hardy spaces
and Bergman spaces the situation is drastically different. In this paper it
is shown that in many respects these results are sharp in the sense that
universality generically appears on maximal exceptional sets. As a main
tool it is proved that the Taylor (backward) shift on certain Bergman
spaces is mixing.
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1 Introduction and main results

For an open set Ω in C with 0 ∈ Ω we denote by H(Ω) the (Fréchet) space
of functions holomorphic in Ω endowed with the topology of locally uniform
convergence. Moreover, for f ∈ H(Ω) we write snf(z) :=

∑n
ν=0 aνz

ν for the
n-th partial sum of the Taylor expansion

∑∞
ν=0 aνz

ν of f about 0. A classical
question in complex analysis is how the partial sums snf behave outside the
disc of convergence and in particular on the boundary of the disc. Based on
Baire’s category theorem, it can be shown that for functions f in the unit disc D
generically the sequence (snf) turns out to be universal outside of D. For precise
definitions and a large number of corresponding results, we refer in particular
to the expository article [20]. For results on universal series in a more general
framework see also [2].

The situation changes if we consider classical Banach spaces of holomorphic
functions. In a first part, we study the generic boundary behaviour of the
Taylor sections snf of functions in Hardy spaces Hp and in Bergman spaces Ap
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of order 1 ≤ p <∞. Subsequently we investigate the Taylor backward shift and
the behaviour of Taylor sections in the case of Bergman spaces Ap(Ω) for more
general domains Ω.

Let m denote the normalized arc length measure on the unit circle T. For
1 ≤ p <∞, the Hardy space (Hp, || · ||p) is defined as the (Banach) space of all
f ∈ H(D) such that

||f ||p := sup
0<r<1

(∫
T
|fr|pdm

)1/p

<∞ ,

where fr(z) := f(rz) for z ∈ D. For basic properties we refer e.g. to [8].
It is well known that each f ∈ Hp has nontangential limits f∗(z) at m-almost

all z on the unit circle T and that f∗ ∈ Lp(T). Moreover, the mapping f 7→ f∗

establishes an isometry between Hp and the closure of the polynomials in Lp(T).
As usual, we identify f and f∗ and, in this way, Hp and the corresponding closed
subspace of Lp(T), which we for clarity also denote by Hp(T). In particular,
the restrictions snf |T of the partial sums of the Taylor expansion of f are the
partial sums of the Fourier expansion of f . So it is consistent to write snf also
for the partial sums of the Fourier expansion

∑∞
ν=−∞ f̂(ν)zν of f ∈ L1(T).

According to the classical Carleson-Hunt theorem, for each p > 1 and each
f ∈ Lp(T) the partial sums snf of the Fourier series converge to f almost
everywhere on T. Due to results of Kolmogorov, in the case p = 1 we have
convergence in measure and therefore, in particular, each subsequence of (snf)
has a subsubsequence converging almost everywhere to f .

Our first result shows that, on the other hand, generically the partial sums
turn out to have a ”maximal” set of limit functions on closed sets of measure
zero. We say that a property is satisfied for comeagre many elements of a com-
plete metric space, if the property is satisfied on a residual set in the space.
Moreover, for a compact subset E of C we denote by C(E) the space of contin-
uous complex valued functions on E endowed with the uniform norm || · ||E .

Theorem 1.1. Let 1 ≤ p < ∞ and suppose E to be a closed subset of T with
vanishing arc length measure. If Λ ⊂ N0 is infinite, then comeagre many f in
Hp enjoy the property that for each g ∈ C(E) a subsequence of (snf)n∈Λ tends
to g uniformly on E. The same is true for comeagre many f ∈ Lp(T).

The proof is given in Section 2.

Remark 1.2. Let (aν)ν∈Z be an arbitrary sequence in C and let sn(z) :=∑n
ν=−n aνz

ν for z ∈ T. As a consequence of Rogosinski summability (see [29, p.
113]) we obtain the following result: If the sequence (sn(ζ)) is Cesàro-summable
to s at the point ζ ∈ T and if a subsequence (snj )j of (sn) converges to some

function h uniformly on the closed set ζE1, where E1 = {e±πi/(2k) : k ∈ N}∪{1},
then necessarily h(ζ) = s.

Since the Fourier series of a function f ∈ L1(T) is Cesàro-summable to
f(ζ) at each point of continuity of f , this shows that the situation changes
drastically if we consider the space C(T) of continuous functions on T instead
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of Lp(T) (or the disc algebra instead of Hp). While, according to the Kahane-
Katznelson theorem (see e.g. [22, p. 58], [20]), each set of vanishing arc length
is a set of divergence for C(T), the above considerations show that, for example,
each uniform limit function h of a subsequence of (snf) on the closed set ζE1

(having the single accumulation point ζ) necessarily has to satisfy h(ζ) = f(ζ).
In particular, if E ⊃ ζE1, for some ζ, a maximal set of limit functions on E as in
Theorem 1.1 is not possible for functions in C(T). On the other hand, pointwise
universal divergence on arbitrary countable sets E does hold generically (see [17]
and [23]). Further interesting results in this direction are found in the recent
paper [25].

We focus now on the question of possible limit functions of (snf) on parts
of the unit circle for functions f in the Bergman spaces Ap.

Let m2 denote the normalized area measure on D. For 1 ≤ p < ∞, the
Bergman space (Ap, || · ||p) is defined as the (Banach) space of all f ∈ H(D)
such that

||f ||p :=
(∫

D
|f |pdm2

)1/p

<∞.

For basic properties we refer to [9] and [16]. It is known (see [9, p. 85]) that for
1 ≤ p <∞ and f ∈ Ap the coefficients an satisfy the condition

an = o(n1/p) (n→∞).

The estimate combined with a result of Shkarin (see [28]) implies that for f ∈ Ap
at most one continuous (pointwise) limit function can exist on each nontrivial
subarc of T. We shall show, in contrast, that maximal sets of limit functions
generically exist on metrically large subsets of T. A trigonometric (or power)
series on T is called universal in the sense of Menshov if each measurable function
g : T → C is the almost everywhere limit of a subsequence of the partial sums
(see e.g. [20]).

Theorem 1.3. For all 1 ≤ p < ∞ comeagre many f in Ap turn out to be
universal in the sense of Menshov, i.e. for each measurable function g : T→ C
a subsequence of the partial sums (snf) tends to g almost everywhere on T.

Again, the proof is given in Section 2.

We consider Bergman spaces on more general domains. For Ω a domain in
the complex plane C and 1 ≤ p < ∞ let Ap(Ω) be the Bergman space of all
functions f holomorphic in Ω and satisfying

||f ||p := ||f ||Ω,p :=
(∫

Ω

|f |p dλ2

)1/p

<∞,

where λ2 denotes the 2-dimensional Lebesgue measure. Again, (Ap(Ω), || · ||p)
is a Banach space (see, e.g. [9], also for further properties). In the case Ω = D
we recover Ap, up to normalisation of the integral.
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If Ω is bounded with 0 ∈ Ω we define T = TΩ,p : Ap(Ω)→ Ap(Ω) by

Tf(z) :=
f(z)− f(0)

z
(z 6= 0), Tf(0) := f ′(0).

If f(z) =
∑∞
ν=0 aνz

ν then

Tf(z) =

∞∑
ν=0

aν+1z
ν

for |z| sufficiently small. We call T the Taylor (backward) shift on Ap(Ω).
Backward shifts are studied intensively on the classical Hardy spaces Hp and
Bergman spaces Ap (see e.g. [6], [27]).

By induction it is easily seen that

Tn+1f(z) =
f − snf(z)

zn+1
(z 6= 0), Tn+1f(0) = an+1, (1)

for n ∈ N0, where, as above, snf denotes the n-th partial sum of the Taylor
expansion of f about 0. This shows that the behaviour of the iterates Tnf is
closely related to the behaviour of the sequence of partial sum snf .

Our aim is to study the dynamics of T on Ap(Ω) and to deduce results con-
cerning the boundary behaviour of the partial sums snf , for generic f ∈ Ap(Ω).
For notions from topological dynamics and linear dynamics used in the sequel
we refer to [3] and [14]. In particular, if X is Banach space, a continuous linear
operator T : X → X is called topologically transitive if for each pair of non-
empty open sets U, V in X a positive integer n exist with Tn(U) ∩ V 6= ∅. If
this condition holds for all sufficiently large n (depending on U, V ), then T is
said to be mixing. It is known that T is mixing on A2 ([14, p. 96], see also [12]).
Moreover, in [4] it is shown that T is mixing on H(Ω) for arbitrary open sets Ω
with 0 ∈ Ω and having the property that each connected component of C∞ \Ω
(with C∞ denoting the extended plane) meets T.

We consider Carathéodory domains Ω, that is, bounded simply connected
domains whose boundary equals the outer boundary (see e.g. [7, p. 171]). In
addition, we suppose that Ω does not separate the plane. If Ω is a Jordan
domain, then both conditions are satisfied.

Theorem 1.4. Let Ω be a Carathéodory domain with 0 ∈ Ω and so that Ω does
not separate the plane. If T \ Ω contains some arc then T is mixing on Ap(Ω)
for all 1 ≤ p <∞.

For the proof we refer to Section 3.

Let Ω, p be so that T is mixing on Ap(Ω). If Λ ⊂ N is infinite, then the Uni-
versality Criterion ([13, Theorem 1] or [14, Theorem 1.57]) shows that comeagre
many f ∈ Ap(Ω) are universal for (Tn+1)n∈Λ, i.e. for comeagre many f ∈ Ap(Ω),
we have that {Tn+1f : n ∈ Λ} is dense in Ap(Ω). From (1) we obtain

|Tn+1f | ≥ |f − snf |
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on D ∩ Ω for all f ∈ H(Ω). Theorem 1.4 immediately implies

Corollary 1.5. Let 1 ≤ p <∞ and let Ω be a Carathéodory domain with 0 ∈ Ω
and so that Ω does not separate the plane. Moreover, suppose that T\Ω contains
some arc. If Λ ⊂ N0 is infinite, then for comeagre many f in Ap(Ω) there is
a subsequence of (snf)n∈Λ tending to f in Ap(Ω ∩ D) and locally uniformly on
Ω ∩ D.

Indeed: Let f be a universal function for (Tn+1)n∈Λ. Then there is a se-
quence (nj) in Λ with Tnj+1f → 0 in Ap(Ω) as j → ∞ and therefore, in
particular, snj

f → f in Ap(Ω ∩ D). Moreover, since convergence in Ap(Ω) im-
plies local uniform convergence (see e.g. [9, p. 8]), we also have snjf → f

(j →∞) locally uniformly on D ∩ Ω.

Remark 1.6. The first assertion (and thus also the assertion of Theorem 1.4)
does no longer hold for general (bounded) simply connected domains Ω: If Ω0

is a domain with Ω0 ⊃ Ω and λ2(Ω0 \Ω) = 0 then each sequence of polynomials
which converges in Ap(Ω) also converges in Ap(Ω0). Hence, if snj

f → f in Ap(Ω)
then f extends to a function holomorphic in Ω0. If we consider, for instance,
Ω to be the unit disc minus a radial slit, then convergence of a subsequence of
(snf) in Ap(Ω) is only possible if f extends to a holomorphic function in D.

We consider the case D ⊂ Ω, in which the corollary concerns the behaviour
of (snf) on T. In particular, for comeagre many f ∈ Ap(Ω), a subsequence of
(snf) tends to f locally uniformly on T∩Ω. An interesting question is whether
there are (finite) limit functions different from f on parts of T ∩ Ω.

Due to a classical result of Fatou and M. Riesz (see e.g. [26, Chapter 11]),
for each function f holomorphic in a domain Ω with D ⊂ Ω 6= D and each
closed arc Γ on Ω ∩ T, the partial sums snf converge uniformly to f on Γ if an
tends to 0. This holds in particular for functions in H1 on each closed arc of
holomorphy (if such an arc exists). As already mentioned above, for 1 ≤ p <∞
and f ∈ Ap the coefficients an satisfy the condition an = o(n1/p). In general,
the exponent 1/p is best possible. So, the result of Fatou and M. Riesz does not
apply here. On the other hand, without posing any conditions on the growth of
(an), a recent result of Gardiner and Manolaki (see [11]) shows that arbitrary
functions f holomorphic in D have the following remarkable property:

Let (snk
f) be an arbitrary subsequence of (snf) converging to a (finite) limit

function h pointwise on a subset S of T. If f has nontangential limits f∗(ζ) for
ζ ∈ S, then h = f∗ almost everywhere (with respect to arc length measure) on S.

In particular, the theorem proves the special attraction of the ”right” bound-
ary function as a limit function in the case that f extends continuously to some
subarc of T.

The following result implies that, on small subsets of Ω∩T, even for functions
that belong to Ap(Ω), where Ω is as in Theorem 1.4, a maximal set of uniform
limit functions generically exists. We recall that a closed subset of T is called a
Dirichlet set if a subsequence of (zn) tends to 1 uniformly on E.
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Theorem 1.7. Let 1 ≤ p <∞ and let Ω be a Carathéodory domain with D ⊂ Ω
and so that Ω does not separate the plane. Moreover, suppose that T\Ω contains
some arc. If E ⊂ T∩Ω is a Dirichlet set then comeagre many f ∈ Ap(Ω) enjoy
the property that for each h ∈ C(E) a subsequence of (snf) tends to h uniformly
on E.

The proof is found in Section 3.

Remark 1.8. 1. It is easily seen that each finite set in T is a Dirichlet set.
Moreover, it is known that Dirichlet sets cannot have positive arc length measure
(as also follows from the above results), but can have Hausdorff dimension 1 (see
e.g. [20]).

2. Let f be holomrphic in D. It is known that the condition an = o(n)
implies that (snf) is Cesàro summable at each point ζ ∈ T at which f has an
unrestricted limit (see e.g. [24]). This holds in particular for functions in Ap(Ω)
and all ζ ∈ Ω ∩ T . Again, using results on Rogosinski summability, it can be
shown (cf. [21, Corollary 3.3]) that in the case of the existence of a function
f ∈ Ap(Ω) with (snjf)j tending to f +1 uniformly on a compact set E ⊂ Ω∩T,
the set E necessarily has to satisfy the following (Dirichlet type) condition at
each point z ∈ E: For all sequences (zn) in E with zn/z = 1 + O(1/n) the
sequence (znj

/z)nj tends to 1 as j → ∞. The condition is obviously satisfied
for some subsequence (nj) of the positive integers if E is a Dirichlet set. On the
other hand, for ζ ∈ T the set ζEN , where EN := {eπi/k : k ∈ N, k ≥ N} ∪ {1},
does not satisfy the above condition for any (nj) at the (single) accumulation
point ζ. Thus, in particular, the assertion of Theorem 1.7 does not hold for
compact sets E ⊂ Ω ∩ T containing some ζEN .

2 Proofs of Theorems 1.1 and 1.3

The proofs are based on results on simultaneous approximation by (trigonomet-
ric or algebraic) polynomials. For the (algebraic) case of the Hardy space, this
goes back to Havin ([15], see also [18]). The general approach is inspired by and
based on results of [18].

We consider a Banach space X = (X, || · ||X) with X ⊂ L1(σ) for some Borel
set M ⊂ C and some Borel measure σ supported on M . We say that X is
trigonometric if 0 6∈M and the trigonometric polynomials (i.e. the span of the
monomials Pn, where Pn(z) = zn for z 6= 0 and n ∈ Z) form a dense subspace of

X with lim supn→∞ ||Pn||
1/n
X ≤ 1 and lim supn→∞ ||P−n||

1/n
X ≤ 1. Correspond-

ingly, we say that X is analytic, if a similar condition holds ”one-sided”, that is,

the (algebraic) polynomials are dense in X with lim supn→∞ ||Pn||
1/n
X ≤ 1. In

both cases X is separable since the corresponding polynomials with (Gaussian)
rational coefficients also form a dense subset. The spaces Lp(T) are trigonomet-
ric and the spaces Hp(T) are analytic (with σ = m the normalized arc length
measure). If E ⊂ T then C(E) is trigonometric and, according to Mergelians’s
theorem, also analytic if E is a proper subset of T. Moreover, the Bergman
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spaces Ap are analytic with σ = m2 the normalized area measure on D (see, e.g.
[9, p. 30]).

Let X∗ denote the (norm) dual of X. If X is analytic we define the Cauchy
transform KX : X∗ → H(D) with respect to X by

KXΦ(w) =

∞∑
ν=0

Φ(Pν)wν (w ∈ D, Φ ∈ X∗).

If X is trigonometric then we define KX : X∗ → H(C∞ \T) (where C∞ denotes
the extended plane) as above, for w ∈ D, and in C \ D by

KXΦ(w) =

∞∑
ν=1

Φ(P−ν)w−ν (|w| > 1, Φ ∈ X∗)

(note that always KXΦ vanishes at ∞).
Since the corresponding polynomials form a dense set inX, the Hahn-Banach

theorem implies that KX is injective. We write Xc∗ for the range KX(X∗) of
KX (in H(D) or H(C∞ \ T)), the so-called Cauchy dual of X. Moreover, we
write X1 ⊕X2 for the direct sum of two Fréchet spaces X1 and X2 (cf. [14, p.
36]).

Lemma 2.1. Let X and Y be two trigonometric spaces. Then Xc∗∩Y c∗ = {0}
if and only if the pairs of the form (P, P ), where P ranges over the set of
trigonometric polynomials, form a dense set in the sum X⊕Y . The same holds
for analytic spaces and algebraic polynomials.

Proof. Consider a functional (Φ,Ψ) ∈ (X ⊕ Y )∗ = X∗ ⊕ Y ∗. Then we have

0 = (Φ,−Ψ)(Pn, Pn) = Φ(Pn)−Ψ(Pn)

for all n ∈ Z if and only if KXΦ = KY (Ψ).
If Xc∗ ∩Y c∗ = {0} then KXΦ = KY Ψ = 0. Since KX and KY are injective,

we obtain that (Φ,Ψ) = (0, 0). Then the denseness of the span of the (Pn, Pn)
follows from the Hahn-Banach theorem.

If, conversely, the span of (Pn, Pn) is dense inX⊕Y and if Φ and Ψ are so that
KXΦ = KY Ψ, then the Hahn-Banach theorem implies that (Φ,−Ψ) = (0, 0)
and thus also KXΦ = KY Ψ = 0.

The proof is similar for the analytic case, with Z replaced by N0. �

In order to apply the lemma we need more information about the Cauchy
transforms involved. For E ⊂ T closed, the Riesz representation theorem says
that (C(E))∗ is isometrically isomorphic to the space of complex Borel measures
supported on E and endowed with the total variation norm. If we identify Φ
with the corresponding Borel measure µ, then µ(Pn) =

∫
E
ζndµ(ζ), for all n ∈ Z,

and thus the Cauchy transform of µ is given by

KC(E)µ(w) =

∫
E

dµ(ζ)

1− ζw
(w ∈ C \ T).
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Similarly, according to Φ(f) =
∫
T fhdm (f ∈ Lp(T)) we may identify Φ ∈

(Lp(T))∗ with a unique function h ∈ Lq(T), where q is the conjugate exponent
of p (i.e. pq = p+ q for p > 1 and q =∞ for p = 1). From this it is seen that

KLp(T)h(w) =

∫
T

h(ζ)

1− ζw
dm(ζ) (w ∈ C \ T).

Proof of Theorem 1.1. We start with the (simpler) trigonometric case Lp(T)
and consider the family (sn)n∈Λ (more precisely f 7→ snf |E) as a family of
(continuous) linear mappings from Lp(T) to C(E). As mentioned above, C(E) is
separable. The Universality Criterion (see e.g. [13, Theorem 1] or [14, Theorem
1.57]) implies that it is sufficient – and necessary – to show that for each pair
(f, g) ∈ Lp(T)⊕C(E) and each ε > 0 there exist a trigonometric polynomial P
and an integer n ∈ Λ so that ||f − P ||p < ε and ||g − snP ||E < ε. Since snP =
P for all trigonometric polynomials P and all sufficiently large n (depending
on the degree of P ), it is enough to show that the pairs of the form (P, P ),
where P ranges over the set of trigonometric polynomials, form a dense set in
Lp(T)⊕ C(E). Due to Lemma 2.1, it suffices to show that

(Lp(T))c∗ ∩ (C(E))c∗ = {0}.

To this aim, we consider h ∈ Lq(T) and µ a complex Borel measure on T
supported on E with KLp(T)h = KC(E)µ. Then the measure ν := µ − hm
satisfies

ν(Pn) =

∫
E

ζndµ(ζ)−
∫
T
ζnh(ζ) dm(ζ) = 0 (n ∈ Z).

Since C(T) is trigonometric, we obtain ν = 0 and thus µ = hm. On the other
hand, since m(E) = 0, the measure µ is singular with respect to m. This shows
that µ = 0 and then also KLp(T)h = 0 (actually h = 0).

The arguments are similar in the analytic case Hp(T) (cf. [18]). Since Hp(T)
is a closed subspace of Lp(T), the Hahn Banach theorem shows that again each
functional Φ on Hp(T) is induced by some h ∈ Lq(T) (now, however, not in a
unique way). We consider the Cauchy transforms KHp(T)Φ and KC(E)µ on D.
If KHp(T)Φ = KC(E)µ then we obtain as above ν(Pn) = 0, now for all n ∈ N0.
The F. and M. Riesz theorem then implies that ν is absolutely continuous with
respect to m and therefore the same is true for µ. Still µ is also singular with
respect to m. So again we obtain µ = 0 and then also KHp(T)Φ = 0. �

We now turn towards the proof of Theorem 1.3 As above, basically we need
a result on simultaneous approximation. The corresponding deep considerations
are found in [18]. They complete former work of Kegejan and Talaljan (cf. [18]).

Let E be a proper closed subset of T with m(E) > 0. Then E is said to
satisfy Carleson’s condition if

`(E) :=
∑
k

m(Bk) log(1/m(Bk)) <∞

where T \ E =
⋃
k Bk is the finite or countable union of the pairwise disjoint

open arcs Bk. With this notation we have the following result.
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Theorem 2.2. Let 1 ≤ p < ∞ and E ⊂ T be closed with either m(E) > 0
and E not containing a closed subset of positive measure satisfying Carleson’s
condition or else m(E) = 0. If Λ ⊂ N0 is infinite, then comeagre many f in Ap

enjoy the property that for each g ∈ C(E) a subsequence of (snf)n∈Λ tends to
g uniformly on E.

Proof. Let 1 ≤ p < ∞ be fixed. As in the proof of Theorem 1.1 it suf-
fices to show that the pairs of the form (P, P ), where P ranges over the set of
polynomials, form a dense set in Ap ⊕ C(E).

If f ∈ H(D) and 0 ≤ r < 1 we write M(r, f) := max|z|≤r |f(z)|. With that,
for s > 0 we consider the (Banach) space Bs of functions f ∈ H(D) satisfying

M(r, f)(1− r)s → 0 (r → 1−),

equipped with the norm ||f ||Bs := max0≤r<1M(r, f)(1− r)s (cf. [18]).
The fundamental Theorem 4.1 in [18] shows that for all s > 0 there is a

sequence of polynomials Qn with Qn → 1 in Bs and Qn → 0 uniformly on E,
as n → ∞. It is easily seen that Bs is continuously embedded into Ap for all
s < 1/p (cf. [9, pp. 78]). Thus, if we choose s < 1/p, then we also have Qn → 1
in Ap.

Let Dq denote the Dirichlet space of order q ≥ 1, that is, the space of all
f ∈ H(D) with f ′ ∈ Aq. It is known that, for p > 1, the Cauchy dual (Ap)c∗

of Ap equals Dq, with q the conjugate exponent (cf. [19], [6]). Since the mul-
tiplication operator f 7→ P1f is continuous on Ap, Theorem 1.3 of [18] implies
the assertion (actually for this we only need that the Cauchy dual contains all
polynomials). �

Proof of Theorem 1.3. It can be shown that for each ε > 0 there is a
closed set E as in Theorem 2.2 and so that m(T \ E) < ε. More explicitly,
for given 0 < ε < 1, let N ∈ N be so that

∑∞
j=0(N + j)−2 < ε. For such N

we consider EN =
⋂
j∈N0

EN,j to be a Cantor set, where EN,j is defined by

successive ”cancellation” of 2j open arcs of length mN,j := 2−j(N + j)−2 (cf.
[18, p. 163]). Then we obtain

m(T \ EN ) =

∞∑
j=0

2jmN,j =

∞∑
j=0

1

(N + j)2
< ε

and

`(EN ) =

∞∑
j=0

2jmN,j log(1/mN,j)

≥
∞∑
j=0

2jmN,j log(2j) = log(2)

∞∑
j=0

j

(N + j)2
=∞,

so that EN does not satisfy Carleson’s condition. But then also no compact
subset of positive measure satisfies the condition (see [18, Theorem 5.1]).
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The proof of Theorem 1.3 now follows from Lusin’s theorem by a diagonal
argument where we choose an increasing sequence EN as above with m(EN )→ 1
as N →∞ (cf. [20]).

Remark 2.3. Let B0 denote the little Bloch space, that is, the set functions
f ∈ H(D) satisfying

M(r, f ′)(1− r)→ 0 (r → 1−).

It is known that B0 coincides with the closure of the polynomials in the Bloch
space B (and is thus in particular normed in that way), and that B0 is contained
in all Bs for s > 0 and therefore also in all Ap. For functions in B0, the Taylor
coefficients an tend to 0 ([9, p. 80]). Moreover, one can show that the Cauchy
dual of B0 equals D1 (see [1]). From the considerations in the proof of Theorem
2.2 and Lemma 2.1 it is seen that Dq ∩ (C(E))c∗ = {0} for all q > 1 and all
E as in Theorem 2.2. An interesting question is, which conditions on E would
guarantee D1 ∩ (C(E))c∗ = {0}. The corresponding sets E again turn out to
be sets on which the partial sums snf , for generic f ∈ B0, have maximal set
C(E) of uniform limit functions. In particular, it would be interesting to know
if functions in B0 can be universal in the sense of Menshov.

3 Proofs of Theorems 1.4 and 1.7

In order to see how tools from linear dynamics enter, we first give a short proof
of Theorem 1.4 for the case of Ω being the unit disk.

Proposition 3.1. Let 1 ≤ p <∞. Then T is mixing on Ap.

The proof is a straight forward application of Kitai’s criterion using the fact
that S : Ap → Ap, defined by Sg(z) = zg(z), is a right inverse of T . Indeed:
Lebesgue’s dominated convergence theorem shows that Sng → 0 in Ap, for all
g ∈ Ap. Moreover, (1) implies that TnP eventually vanishes for each polyno-
mial P . Since the polynomials are dense in Ap (see e.g. [9, Theorem 3]), Kitai’s
criterion (see [14, Theorem 3.4]) implies that T : Ap → Ap is mixing.

Remark 3.2. The operator T is no longer mixing on the little Bloch space B0

and on the Hardy spaces Hp, since in these cases the Taylor coefficients an of
all f tend to 0. But then it is easily seen that, for all f , the sequence (Tnf)
also tends to 0 locally uniformly on D. This implies that T cannot even be
topologically transitive.

For M ⊂ C∞ we write

M ′ := 1/(C∞ \ Ω)

(with 1/∞ := 0 and 1/0 :=∞). Then for open sets Ω in C∞ with 0 ∈ Ω the set
Ω′ is a compact plane set.

10



Let in the sequel Ω be a Carathéodory domain. It is readily seen that the
Cauchy kernel provides a family of eigenfunctions for T . More precisely, for
α ∈ C we define

γα(z) = 1/(1− zα) (z ∈ C \ {1/α}).
Then, for each α in the interior of Ω′, the function γα belongs to Ap(Ω) and γα
is an eigenfunction for T corresponding to the eigenvalue α. In particular, since
Ω′ coincides with the closure of its interior, the compact set Ω′ is contained in
the spectrum of T . On the other hand, one observes that in case α ∈ 1/Ω

Sαg(z) :=
zg(z)− g(1/α)/α

1− zα

(continuously extended at the point 1/α) defines the continuous inverse operator
to T − αI (with I being the identity operator on Ap(Ω)). This shows that the
spectrum of T on Ap(Ω) equals Ω′. In the case p < 2 the functions γα belong
to Ap also for α ∈ ∂(1/Ω) = ∂(Ω′), and therefore they are also eigenfunctions.
In particular, the spectrum equals the point spectrum in that case.

It is known that a sufficient supply of unimodular eigenvalues implies that
T is topologically transitive or even mixing (see e.g. [3], [14]).

We are interested mainly in the case D ⊂ Ω. Then unimodular eigenvalues
exist only for p < 2. Therefore, in the case p ≥ 2 an approach to universality
properties via unimodular eigenvalues is no longer possible. Instead, for p ≥ 2 we
consider certain ”integral means” of eigenvectors corresponding to unimodular
eigenvalues for p < 2:

Let Γ ⊂ T be a closed arc. We consider the Cauchy integral f ∈ H(C \ Γ),
defined by

f(w) =

∫
Γ

dζ

ζ − w
(w 6∈ Γ).

It is well known (see e.g. [16, Theorem 1.7]) that∫
T

dm(ζ)

|ζ − w|
= O

(
log

1

1− |w|

)
(|w| → 1−),

which implies that |f |p is locally integrable on C for all 1 ≤ p <∞ and thus, in
particular, f ∈ Ap(Ω).

For α ∈ C we define fα = fα,Γ ∈ H(C \ α−1Γ) (with ∞Γ := ∅) by

fα(z) := f(αz) =

∫
Γ

dζ

ζ − αz
(z 6∈ α−1Γ).

We consider Γ, A ⊂ T to be closed arcs with A−1Γ ⊂ T \ Ω. From the above
considerations it follows that fα ∈ Ap(Ω) for all α ∈ A and all 1 ≤ p <∞.

Lemma 3.3. Let Ω be a Carathéodory domain so that Ω does not separate
the plane. If T \ Ω contains an arc, then closed arcs A ⊂ T and Γ ⊂ T exist
with the property that for each subset B of A such that the closure in A has
positive m-measure the span of {fα = fα,Γ : α ∈ B} is dense in Ap(Ω), for all
1 ≤ p <∞.
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Proof. According to the Farrell-Markushevich theorem, the set of polynomi-
als, and thus in particular Ap(Ω) for p > 1, is dense in A1(Ω) (see e.g. [7, p.
173]). Therefore, it suffices to prove the result for p > 1.

Since T \ Ω contains an arc, there are closed arcs A,Γ ⊂ T such that
dist(A−1Γ,T∩Ω) > 0. Moreover, since Ω does not separate the plane, the arc Γ
can be chosen so small that, in addition, the open set {α ∈ C : dist(Γ, αΩ) > 0}
contains a connected open set U with 0 ∈ U and so that A ⊂ ∂U . From the
above considerations it is seen that for α ∈ U the function fα is holomorphic in
a neighbourhood of Ω and thus fα ∈ Ap(Ω).

Let Φ ∈ Ap(Ω)∗ be given. If α ∈ U is fixed then there are neighbourhoods
V of Ω and W of α so that fβ is holomorphic in V for all β ∈W . This implies
that

fβ(z)− fα(z)

β − α
→ z

∫
Γ

dζ

(ζ − αz)2
(β → α)

uniformly on Ω and therefore also in Ap(Ω). From this it is seen that the
function h : U ∪ A → C, defined by h(α) := Φ(fα), is holomorphic on U . It
suffices to show that h vanishes identically if it vanishes on the set B. (Indeed:
In this case h(ν)(0) = Φ(Pν)

∫
Γ

1/ζν dζ = 0 for all ν ≥ 0 so that, again by
the Farrell-Markushevich theorem, Φ = 0. The assertion then follows by the
Hahn-Banach theorem.)

From the definition of fα it is seen that there exists a neighbourhood D of
A relative to D such that {fα : α ∈ D} is a bounded family in Ap(Ω). We can
choose D in such a way that the interior Do (with respect to C) is a Jordan
domain with piecewise smooth boundary (a sector, for instance).

If α ∈ A and if (αn) is a sequence in D with αn → α, then fαn
→ fα point-

wise on Ω. Since p > 1, the boundedness of the family {fα : α ∈ D} implies
that h(αn)→ h(α) (see Lemma 1.10 of [7]). This shows that h is continuous on
A. Thus, if h|B = 0 we have vanishing nontangential limits of h at all points of
the closure of B in A. Moreover, the boundedness of the family {fα : α ∈ D}
implies the boundedness of h on D. Since the closure of B in A has positive
measure, we obtain that h = 0 on Do (cf. [8, Theorem 10.3]) and then also on
U . �

Remark 3.4. The proof of the Lemma shows that in the case p < 2, for each arc
A ⊂ Ω′ and each subset B of A such that the closure in A has positive measure,
the span of {γα : α ∈ B} is dense in Ap(Ω). The corresponding approximation
result appears for p = 1 as a special case of the main theorem from [5].

Proof of Theorem 1.4. Let A and Γ be closed arcs of T as in Lemma 3.3.Then
the span of {fα : α ∈ A} is dense in Ap(Ω). For f ∈ H(Ω) we have

Tnf(z) =
1

2πi

∫
γ

f(ξ)

ξn (ξ − z)
dξ

with γ some closed path with indγ(0) = indγ(z) = 1 and indγ(w) = 0 for all
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w /∈ Ω. Applying the Cauchy formula to the functions fα, this yields

Tnfα(z) = αn
∫

Γ

dζ

(ζ − αz) ζn
,

for α ∈ A. By partial integration we get∫
Γ

dζ

(ζ − αz) ζn
=

1

n− 1

(∫
Γ

−dζ
(ζ − αz)2 ζn−1

− 1

(b− αz) bn−1
+

1

(a− αz) an−1

)
with a and b the endpoints of Γ. Hence, for every open neighborhood U of
α−1Γ, we have that Tnfα(z)→ 0 as n tends to ∞ uniformly on Ω \ U . Since

|Tnfα(z)| ≤ 2π

∫
T

dm(ζ)

|ζ − αz|
(z ∈ D)

and since U can be chosen of arbitrary small area, this shows that ||Tnfα||p → 0
for n→∞. If we define Sn on the span of {fα : α ∈ A} by

Snfα(z) :=
1

αn

∫
Γ

ζn

ζ − αz
dζ

(and linearity) we have TnSnfα = fα. Moreover, ||Snfα||p → 0 for n → ∞
follows by similar arguments as above. An application of Kitai’s criterion (cf.
[14, Theorem 3.4]) yields the assertion. �

Remark 3.5. In the case p < 2, Theorem 1.4 may also be deduced from Remark
3.4 and [3, Theorem 5.41]. Moreover, in this case, for Ω is as in Theorem, the
operator T is also chaotic on Ap(Ω). Indeed: Let A be an arc in T ∩ Ω′. Since
the span of {γα : α ∈ A,α a root of unity} consists of periodic points, Lemma
3.3 (cf. Remark 3.4) implies that the periodic points are dense in Ap(Ω). This
is no longer true for p ≥ 2 and D ⊂ Ω, in which case actually no periodic points
exist (cf. [14, p. 96]).

Proof of Theorem 1.7. Let Λ ⊂ N0 be infinite with zn+1 → 1 uniformly
on E as n → ∞, n ∈ Λ. According to Mergelian’s theorem (note that E has
connected complement), the polynomials are dense in C(E). So we can assume
h ∈ Ap(Ω).

Let f be universal for (Tn+1)n∈Λ (which is the case for comeagre many f in
Ap(Ω)). Since convergence in Ap(Ω) implies local uniform convergence, there
are nj in Λ with Tnj+1f → f − h (j →∞) locally uniformly on Ω and thus in
particular uniformly on E. Then also

znj+1Tnj+1f(z)→ (f − h)(z) (j →∞)

uniformly on E and therefore

snj
f(z) = f(z)− znj+1Tnj+1f(z)→ h(z) (j →∞)

uniformly on E. �
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