SS 2008 03.06.2008

7. Übung zur Approximationstheorie

Ü19: Es sei $\Omega \subset \mathbb{K}^d$ offen und

$$d(f,g) := \sum_{j=1}^{\infty} \frac{1}{2^j} \frac{\|f - g\|_{K_j}}{1 + \|f - g\|_{K_j}} \qquad (f, g \in C(\Omega)),$$

wobei (K_j) wie in B. 5.1. Überlegen Sie sich, dass d eine Metrik auf $C(\Omega)$ ist.

Ü20: Es seien Ω, d wie in Ü19, und es sei (f_n) eine Folge in $C(\Omega)$. Zeigen Sie:

- (i) (f_n) ist eine Cauchy-Folge in $(C(\Omega), d)$ genau dann, wenn (f_n) für alle $K \subset \Omega$ kompakt eine Cauchy-Folge in $(C(K), \|\cdot\|_K)$ ist.
- (ii) Es gilt $f_n \to f$ in $(C(\Omega), d)$ genau dann, wenn

$$f_n \to f$$
 gleichmäßig auf K

für alle $K \subset \Omega$ kompakt.

(iii) $(C(\Omega), d)$ ist vollständig.

Ü21: Es sei $K \subset \mathbb{C}$ ein Faber-Kompaktum. Zeigen Sie:

a) Ist $Q \in \mathscr{P}_n$, so gilt

$$S_n(Q,K)=Q.$$

- b) Ist $D := \operatorname{Int}(\Gamma_R)$ für ein R > 1 und ist $\Omega \subset \operatorname{Ext}(\Gamma_R)$ offen ohne Löcher, so existiert eine dichte G_{δ} -Menge M in H(D) so, dass für alle $f \in M$ die Folge $(S_n(f,K))_n$ dicht in $H(\Omega)$ ist.
- Ü22: Beweisen Sie: Ist A eine punktetrennende Algebra in C(S) mit $1 \in A$, so existiert für alle $x, y \in S, x \neq y$ und alle $a, b \in \mathbb{K}$ ein $g \in A$ mit g(x) = a und g(y) = b.