WS 2005/2006 08.11.2005

2. Übung zur Analysis I

Abgabe: Montag, 14.11.2005, vor der Vorlesung

Gruppenübungen

G1: Finden Sie Funktionen $f, g : \mathbb{N} \to \mathbb{N}$ mit $g \circ f \neq f \circ g$.

G2: Untersuchen Sie die folgenden Funktionen auf Injektivität, Surjektivität und Bijektivität:

(i)
$$f: \mathbb{Z} \to \mathbb{N}_0$$
, $f(x) = x^2 \quad (x \in \mathbb{Z})$,

(ii)
$$g: \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0$$
, $g(x,y) = x + y$ $(x, y \in \mathbb{N}_0)$,

(iii)
$$h = f_{|\mathbb{N}_0}$$
,

(iv)
$$k := g_{|\mathbb{P} \times \mathbb{P}}$$
.

G3: Es sei $(K, +, \cdot)$ ein Körper. Zeigen Sie: Für alle $x \in K$ gilt $x \cdot 0_K = 0_K$.

Hausübungen

H4: Es seien X,Y Mengen und $f:X\to Y,\ g:Y\to X$ mit

$$q \circ f = id_X$$
.

Was kann man über f bzw. g hinsichtlich Injektivität, Surjektivität bzw. Bijektivität aussagen?

H5: Es sei $M \neq \emptyset$ eine Menge. Wir setzen

$$Pot(M) := \{A : A \text{ Teilmenge von } M\}.$$

Außerdem sei für $A \in \text{Pot}(M)$ die Funktion $\chi_A : M \to \{0,1\}$ definiert durch

$$\chi_A(x) := \begin{cases}
1, & \text{falls} \quad x \in A \\
0, & \text{falls} \quad x \in C_M(A)
\end{cases}$$

Überlegen Sie sich, dass $A \mapsto \chi_A$ eine bijektive Abbildung von Pot(M) nach $\{f: f \text{ Abbildung von } M \text{ nach } \{0,1\}\}$ ist.

H6: Es sei $(K, +, \cdot)$ ein Körper. Zeigen Sie: Für alle $a \in K \setminus \{0_K\}$ und alle $b \in K$ hat die Gleichung ax = b genau eine Lösung, nämlich x = b/a.