SS 2004

16.06.2004

7. Übung zur Vorlesung Elemente der Analysis II

Gruppenübungen

G15: a) Zeigen Sie: Für alle $x \in [-1, 1]$ gilt

$$\cos(\arcsin x) = \sin(\arccos x) = \sqrt{1 - x^2}$$
.

b) Es seien $x,y\in\mathbb{R}$ mit $x^2+y^2=1$. Zeigen Sie: Für $\varphi=\arccos x$ gilt

$$x = \cos \varphi$$
, $|y| = \sin \varphi$.

G16: Beweisen Sie: Für $x \in \mathbb{R}$ gilt $\cos x = 0$ genau dann, wenn $x = (k + \frac{1}{2})\pi$ für ein $k \in \mathbb{Z}$ gilt.

Hausübungen

H19: (ebene Polarkoordinaten)

Überlegen Sie sich, dass für jedes Paar $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ genau ein Paar (r,φ) mit $r > 0, \varphi \in [0,2\pi)$ und

$$x = r \cdot \cos \varphi$$
, $y = r \cdot \sin \varphi$

existiert.

H20: Verwenden Sie die Potenzreihenentwicklung

$$\cos x = \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu} x^{2\nu}}{(2\nu)!}$$

zur näherungsweisen Berechnung von $\cos x$ für einige Werte von x.

Was beobachten Sie, wenn |x| "groß" ist? Wie könnte man bei der Berechnung von $\cos x$ vorgehen, um die Probleme für große |x| zu vermeiden?