Stochastische Prozesse I Übungen

Besprechungstermin: 28.11.13, 14.30 Uhr

Aufgabe 13. (Supermartingaleigenschaft positiver lokaler zeitstetiger Martingale) $\overline{X} = (X_t)_{t \geq 0}$ sei ein positives lokales Martingal, $I = \mathbb{R}_+$. Zeigen Sie, dass X ein Supermartingal ist. (Im zeitdiskreten Fall $I = \mathbb{N}_0$ ist ein positives lokales Martingal nach Satz 2.10 schon ein Martingal.)

Hinweis: Lemma von Fatou für bedingte Erwartungswerte (s. Exkurs A.2)

Aufgabe 14. (Einfacher symmetrischer Random walk auf Z, first passage time)

 $(Z_n)_{n\geq 1}$ sei iid Folge mit $P(Z_1=\pm 1)=\frac{1}{2},\ X_n:=\sum_{i=1}^n Z_i, Z_0=X_0:=0$ und $\mathbb{F}:=\mathbb{F}^Z$. Für $z\in\mathbb{N}$ sei

$$\sigma := \inf\{n \ge 1 : X_n = z\}.$$

Zeigen Sie für die \mathbb{F} -Stoppzeit σ :

 $\sigma < \infty$ f.s., $E\sigma = \infty$, σ ist <u>nicht</u> regulär für das **F**-Martingal X.

Hinweis: Beispiel 2.8. Man vergleiche σ mit

$$\tau_y := \inf\{n \ge 1 : X_n \in \{-y, z\}\}, y \in \mathbb{N}, y \to \infty.$$

Aufgabe 15. (Doob-Zerlegung für gestoppte \mathcal{L}^1 -Folgen)

 \overline{X} sei eine \mathbb{F} -adaptierte \mathscr{L}^1 -Folge mit Doob-Zerlegung X = M + A und τ eine \mathbb{F} -Stoppzeit $(I = \mathbb{N}_0 \text{ oder } I = \{0, \dots, N\})$. Zeigen Sie:

$$X^{\tau} = M^{\tau} + A^{\tau}$$

ist die Doob-Zerlegung von X^{τ} .

Aufgabe 16. (Die Klasse der lokalen \mathbb{F} -Martingale ist ein Vektorraum)

X und Y seien lokale \mathbb{F} -Martingale $(I = \{0, \dots, N\} \text{ oder } I = \mathbb{N}_0), \alpha, \beta \in \mathbb{R}$. Zeigen Sie, dass $\alpha X + \beta Y$ ein lokales \mathbb{F} -Martingal ist.