Stochastische Prozesse I

Übungen

Besprechungstermin: 12.02.09, 14.00 Uhr

Aufgabe 47. (Reflektierte BM)

 $\overline{W} = (W_t)_{t \geq 0}$ sei eine $\mathbb{F} - BM$. Zeigen Sie: $|W| := (|W_t|)_{t \geq 0}$ ist ein \mathbb{F} -Markov-Prozeß mit Zustandsraum $\mathcal{X} = \mathbb{R}_+$ und HG $(Q_t)_{t \geq 0}$, wobei $Q_t(x, \cdot) = \psi(t, x, \cdot)\lambda_{\mathbb{R}_+}$,

$$\psi(t, x, y) = \frac{1}{\sqrt{2\pi t}} \left[\exp(-\frac{(y-x)^2}{2t}) + \exp(-\frac{(y+x)^2}{2t}) \right], t > 0, x, y \ge 0.$$

Hinweis: $Q_t(x, \cdot) = N(x, t)(\cdot \cap \mathbb{R}_+) + N(-x, t)(\cdot \cap \mathbb{R}_+), t > 0$ und Satz 10.6.

Aufgabe 48. (OU-Prozeß)

- a) X sei ein \mathbb{F} -Markov-Prozeß mit Zustandsraum $(\mathcal{X}, \mathcal{A})$ und HG $(R_t)_{t\geq 0}$. Y sei ein \mathcal{X} wertiger Prozeß mit $X \stackrel{D}{=} Y$. Zeigen Sie: Y ist ein \mathbb{F}^Y -Markov-Prozeß mit HG $(R_t)_{t\geq 0}$.
- b) $X = (X_t)_{t \geq 0}$ sei ein (stationärer) Ornstein-Uhlenbeck Prozeß mit Parametern $\alpha, \beta > 0$. (s. Aufgabe 38). Zeigen Sie: X ist \mathbb{F}^X -Markov mit HG $(Q_t)_{t \geq 0}$,

$$Q_t(x,\cdot) := N(e^{-\alpha t}x, \beta(1 - e^{-2\alpha t})).$$

Aufgabe 49. (Zeitumkehr)

 \overline{X} sei ein \overline{X} -wertiger F-Markov-Prozeß mit Markov-Halbgruppe $(R_t)_{t\geq 0}, f: \overline{X} \to R$ meßbar mit $f \in \bigcap_{\substack{x \in X \\ s \leq t}} \mathcal{L}^1(R_s(x,\cdot))$ und $R_{t-s}f(X_s) \in \mathcal{L}^1(P) \ \forall s \leq t \ (z.B. \ f \ beschränkt)$. Zeigen Sie:

$$(R_{t-s}f(X_s))_{0\leq s\leq t}$$
 ist ein $(\mathcal{F}_s)_{s\leq t}$ - Martingal.

<u>Aufgabe 50.</u> (Geometrischer Lévy-Prozeß)

 $\overline{X} = (X_t)_{t \geq 0}$ sei ein reeller F-Lévy-Prozeß und

$$Y_t := Y_0 \exp(X_t), t \ge 0,$$

mit einer Konstanten $Y_0 > 0$. Zeigen Sie, dass $Y = (Y_t)_{t \geq 0}$ ein \mathbb{F} -Markov-Prozeß mit Zustandsraum $\mathcal{Y} = (0, \infty)$ ist und beschreiben Sie die HG.