SS 2013 Blatt 6

Stabile Konvergenz von Zufallsvariablen

Übungen

Aufgabe 12

 $\overline{\text{Sei }(Z_n)_{n\in\mathbb{N}}}$ eine iid Folge reeller Zufallsvariablen mit $Z_1\in\mathcal{L}^2(P), EZ_1=0$ und $\sigma^2:=\operatorname{Var} Z_1>0.$

Zeigen Sie

$$\frac{1}{\sigma\sqrt{n}} \max_{0 \le j \le n} \sum_{i=1}^{j} Z_i \to \mu \text{ mischend},$$

wobei

$$\frac{d\mu}{d\lambda}(t) = \frac{2}{\sqrt{2\pi}}e^{-t^2/2}1_{\mathbb{R}_+}(t).$$

Hinweis: μ ist die Verteilung von $\max_{t \in [0,1]} W_t$ für eine Brownsche Bewegung $(W_t)_{t \in [0,1]}$.

Aufgabe 13

 $\overline{\text{Sei}(Z_n)_{n\in\mathbb{N}}}$ eine iid Folge reeller Zufallsvariablen mit $Z_1\in\mathcal{L}^2$, $EZ_1=0$, $\sigma^2:=\text{Var}Z_1>0$. Zeigen Sie

$$X_n := \frac{1}{\sigma^2 n^2} \sum_{i=2}^n \left(\sum_{i=1}^{j-1} Z_i \right) \to P_0^{\int_0^1 W_t^2 dt}$$
 mischend,

wobei $(W_t)_{t\in[0,1]}$ eine BM bezeichnet, und (X_n) konvergiert nicht stochastisch.

Aufgabe 14 (Borel-Cantelli-Eigenschaft)

Seien $F_n \in \mathcal{F}$ und $\alpha \in (0,1)$ mit

$$\lim_{n\to\infty} P(F_n \cap G) = \alpha P(G) \text{ für alle } G \in \mathcal{F}.$$

Zeigen Sie

$$P\left(\liminf_{n\to\infty} F_n\right) = 0, \ P\left(\limsup_{n\to\infty} F_n\right) = 1.$$

Hinweis: Aufgabe 8.

Aufgabe 15*

 $\overline{\text{Sei }(Z_n)_{n\in\mathbb{N}}}$ stationär, ergodisch, reell und

$$X_n := \frac{1}{a_n} \left(\max_{1 \le i \le n} Z_i - b_n \right) \xrightarrow{d} \nu$$

 $mit \ a_n > 0, b_n \in \mathbb{R}.$

Zeigen Sie

$$X_n \to \nu$$
 mischend.

(Im iid-Fall ist dies bekannt.)