WS 2009/10 Blatt 3 H. Luschgy

Maß- und Integrationstheorie

Übungen

Abgabetermin: 19.11.2009, 12.00 Uhr, Übungskasten 22

Aufgabe 9 (2+2 Punkte)

Sei (Ω, \mathcal{A}) ein messbarer Raum. Bestätigen Sie, dass durch

$$\mu(A) := \left\{ \begin{array}{ll} |A| & , \quad A \text{ endlich} \\ \infty & , \quad \text{sonst} \end{array} \right.$$

(Zählmaß) und

$$\nu(A) := \left\{ \begin{array}{ll} 0 & , & A = \emptyset \\ \infty & , & \mathrm{sonst} \end{array} \right.$$

(triviales Maß) Maße auf \mathcal{A} definiert werden.

Aufgabe 10 (4 Punkte)

 $(\Omega, \mathcal{A}, \mu)$ sei ein Maßraum. Zeigen Sie für $A_n \in \mathcal{A}, n \in \mathbb{N}$:

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n), \text{ falls } \mu(A_n \cap A_m) = 0 \text{ für } n \neq m.$$

Aufgabe 11 (3+3) Punkte

Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum. Zeigen Sie:

- a) $\mu^*(B) = \inf\{\mu(A) : A \in \mathcal{A}, B \subset A\}, B \subset \Omega.$
- b) Zu jeder Menge $B \subset \Omega$ existiert eine Menge $A \in \mathcal{A}$ mit $B \subset A$ und $\mu^*(B) = \mu(A)$.

Hinweis zu b): Mit Hilfe von a) gewinne man eine Folge von A_n 's und konstruiere aus dieser A.

Aufgabe 12 (4 Punkte)

Es sei \mathcal{A} ein Semiring und $\mu: \mathcal{A} \to [0, \infty]$ σ -additiv, μ^* das zugehörige äußere Maß und $\mathcal{M}(\mu^*)$ die σ -Algebra der μ^* -messbaren Mengen. Ferner sei $\tilde{\mu}$ das zu $\mu^*_{|\mathcal{M}(\mu^*)}$ gehörige äußere Maß. Zeigen Sie, dass $\tilde{\mu} = \mu^*$.