Maß- und Integrationstheorie Übungsblatt 11 WS 2009/10

J. Dimitriadis, H. Luschgy, L. Mattner

Abgabetermin: Donnerstag, 28.01.2010, 12 Uhr, Kasten 22

42 Ein verallgemeinerter Satz von der monotonen Konvergenz (4 Punkte)

Es sei (f_n) eine Folge messbarer $[-\infty, \infty]$ -wertiger Funktionen auf dem Maßraum $(\Omega, \mathcal{A}, \mu)$. Beweisen Sie: Ist die Folge (f_n) punktweise konvergent mit

$$0 \le f_n \le \lim_{n \to \infty} f_n \qquad (n \in \mathbb{N})$$

so gilt

$$\lim_{n\to\infty} \int f_n d\mu = \int \lim_{n\to\infty} f_n d\mu$$

43 Vollständigkeit von \mathcal{L}^{∞} (4 Punkte)

Zeigen Sie den verbliebenen Teil von Satz 7.14: $\|\cdot\|_{\infty}$ ist eine vollständige Quasinorm auf \mathcal{L}^{∞} .

Hinweis: Der Raum der beschränkten \mathbb{R} -wertigen Funktionen auf \mathcal{X} mit der gewöhnlichen Supremumsnorm ist vollständig.

44 \mathcal{L}^1 -Konvergenz vs. fast sichere Konvergenz (4 Punkte)

Für $k \in \mathbb{N}$ sei

$$A_k := [\frac{k-2^{n(k)-1}}{2^{n(k)-1}}, \frac{k+1-2^{n(k)-1}}{2^{n(k)-1}}]$$

mit $n(k) \in \mathbb{N}$, $2^{n(k)-1} \le k < 2^{n(k)}$. Zeigen Sie: Für $f_k = \mathbf{1}_{A_k}$ und $\mu = \lambda_{[0,1]}$ gilt $f_k \to 0$ in $\mathcal{L}^1(\mu)$, jedoch nicht $f_k \to 0$ μ -f.s.

45 Stetigkeit und Differenzierbarkeit parameterabhängiger Integrale (4 Punkte)

Beweisen Sie den Satz 7.22 a) sowie die folgende Aussage: Sei $I \subset \mathbb{R}$ ein Intervall, $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $f: I \times \Omega \to \mathbb{R}$ eine Funktion mit $f(x, \cdot) \in \mathcal{L}^1(\mu)$ für jedes $x \in I$ und $f(\cdot, \omega)$ differenzierbar für jedes $\omega \in \Omega$. Es existiere eine Funktion $g \in \mathcal{L}^1(\mu)$ mit $\sup_{x \in I} |f'(x, \cdot)| \leq g \mu$ -f.s. Dann ist die Funktion $F: I \to \mathbb{R}$ mit $F(x) := \int f(x, \omega) \, \mathrm{d}\mu(\omega)$ für $x \in I$ differenzierbar und es gilt $F'(x) = \int f'(x, \omega) \, \mathrm{d}\mu(\omega)$.