Maß- und Integrationstheorie

Übungen

Abgabetermin: 5.11.2009, 12.00 Uhr, Übungskasten 22

Aufgabe 1 (σ -Algebren/3+3 Punkte)

a) \mathcal{A} sei eine σ -Algebra über Ω und $B \subset \Omega$. Zeigen Sie:

$$\sigma(A \cup \{B\}) = \{A_1 \cap B + A_2 \cap B^c : A_i \in A, i = 1, 2\}.$$

b) $\mathcal{E} = \{A_n : n \in \mathbb{N}\}$ sei eine (abzählbare) Zerlegung von Ω , d.h. die A_n sind paarweise disjunkt und $\Omega = \bigcup_{n=1}^{\infty} A_n$. Zeigen Sie:

$$\sigma(\mathcal{E}) = \{ A(I) : I \subset \mathbb{N} \}$$

 $mit A(I) := \bigcup_{n \in I} A_n.$

Aufgabe 2 (σ -Algebren/4 Punkte)

 $\overline{\text{Für } n \in \mathbb{N}}$ sei \mathcal{A}_n die von $\{\{1\}, \dots \{n\}\}$ über \mathbb{N} erzeugte σ -Algebra. Zeigen Sie:

$$\mathcal{A}_n = \{ A \subset \mathbb{N} : A \subset \{1, \dots, n\} \text{ oder } A^c \subset \{1, \dots, n\} \}.$$

Ist $\bigcup_{n=1}^{\infty} A_n$ eine σ -Algebra über $I\!N$?

<u>Aufgabe 3</u> (Borelsche σ -Algebra/4 Punkte)

Es seien \mathcal{E}_2 und \mathcal{E}_3 die in Satz 1.10 a) definierten Mengensysteme, also $\mathcal{E}_2 = \{\{x \in \mathbb{R}^n : x \leq a\} : a \in \mathbb{R}^n\}$ und $\mathcal{E}_3 = \{(a,b] : a,b \in \mathbb{Q}^n, a \leq b\}$. Man beweise: $\mathcal{B}(\mathbb{R}^n) = \sigma(\mathcal{E}_2) = \sigma(\mathcal{E}_3)$.

Aufgabe 4 (Liouville-Zahlen/4 Punkte)

Zeigen Sie: $L := \{x \in \mathbb{R} : x \text{ ist Liouville-Zahl }\} \in \mathcal{B}(\mathbb{R})$. Dabei heißt $x \in \mathbb{R}$ Liouville-Zahl, wenn $x \notin \mathcal{Q}$ und für jedes $n \in \mathbb{N}$ Zahlen $p, q \in \mathbb{Z}, q \geq 2$ existieren mit

$$\mid x - \frac{p}{q} \mid < \frac{1}{q^n}.$$