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Figure 1.3.11 Sample paths of the process S, for one sequence of realizations
_ }’2(&))',:..,}/9(&)) endn=2,...,9.
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Figure 1.3.12 Sample paths of the process S, for different n and the same sequence
of realizations Y; (w). ..., Y100,000 (w).
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Figure 1.2.4 Two time series X, t = 1,..%,100. Left: 100 successwe. daily log-

returns of the S&P index; see Figure 1.1.J. Right: a simulated sample path of the

autoregressive process Xy = 0.5X;_y + Z;, where Z; are iid N(0;1) random variables;
see BExample 1.2.5. . G L :
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Figure 1.2.2 ‘The (scaled) daily values of the S&P indez over a period of 7,422
days:,: The graph suggests that we consider the S&P time series as the sample path
of & continuous-time process. If there are many values in o time series such that the
instants of time t € T are “dense” in an interval, then one may went to interpret this
discretetime process as a continuous-time process. The sample paths of a real-life
coniinuous-time process are always reported at discrete instants of time. Depending
on the situation, one has to make a decision which model (discrete- or continuous-
time). is more appropricte. =R




