Exkurs C: Gleichgradige Integrierbarkeit

Die fast sichere Konvergenz einer Folge von ZV impliziert im allgemeinen nicht deren \mathcal{L}^p -Konvergenz. \mathcal{L}^p -Konvergenz gilt für genau die fast sicher oder auch nur stochastisch konvergenten Folgen, die "gleichgradig integrierbar" sind.

 (Ω, \mathcal{F}, P) sei ein W-Raum.

C1 Definition $B \subset \mathcal{L}^1 = \mathcal{L}^1(P)$ heißt gleichgradig integrierbar (g.i.), falls

$$\sup_{Y \in B} E|Y|1_{\{|Y|>a\}} \to 0, a \to \infty.$$

Gleichgradig integrierbare Mengen heißen bisweilen auch gleichmäßig integrierbar. Die gleichgradige Integrierbarkeit einer Teilmenge B von \mathcal{L}^1 ist eine Kompaktheitseigenschaft: B ist relativ $\sigma(L^1, L^{\infty})$ -kompakt.

C2 Beispiel (a) \mathscr{L}^1 -majorisierte Mengen sind g.i., also $|Y| \leq Z \in \mathscr{L}^1$ für alle $Y \in B \Rightarrow B$ ist g.i.:

$$|Y|1_{\{|Y|>a\}} \le Z1_{\{Z>a\}} \to 0$$
 punktweise

und daher

$$\sup_{Y \in B} E|Y|1_{\{|Y| > a\}} \le EZ1_{\{Z > a\}} \to 0, a \to \infty$$

nach dem Satz von der beschränkten Konvergenz.

- (b) $B \subset \mathcal{L}^1$ endlich $\Rightarrow B$ ist g.i. Dies folgt aus (a).
- (c) $B\subset \mathscr{L}^1$ sei \mathscr{L}^p -beschränkt für ein p>1, d.h. $\sup_{Y\in B}E|Y|^p<\infty\Rightarrow B$ g.i.:

Sei $c=\sup_{Y\in B}E|Y|^p$ und $\varepsilon>0.$ Wähle a>0 mit $t^p\geq ct/\varepsilon$ für alle t>a. Dann gilt

$$E|Y|1_{\{|Y|>a\}} \leq \frac{\varepsilon}{c} E|Y|^p 1_{\{|Y|>a\}} \leq \frac{\varepsilon}{c} c = \varepsilon$$

für alle $Y \in B$.

Die gleichgradige Integrierbarkeit läßt sich wie folgt charakterisieren.

C3 Lemma $B\subset \mathscr{L}^1$ ist genau dann g.i., wenn B die beiden folgenden Eigenschaften hat:

(i) $\sup_{Y \in B} E|Y| < \infty$, d.h. B ist \mathscr{L}^1 - beschränkt

und

(ii) $\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{mit}$ $P(F) \leq \delta, F \in \mathcal{F} \Rightarrow \sup_{Y \in B} \int_F |Y| dP \leq \varepsilon$ d.h. die Menge der endlichen Maße $\{|Y|P : Y \in B\}$ ist gleichmäßig P-absolut

stetig.

Beweis. Bauer (1992), Maß- und Integrationstheorie, S.140, 146. □

Die \mathcal{L}^1 - Beschränktheit ist also eine notwendige Bedingung und die \mathcal{L}^p - Beschränktheit für ein p > 1 eine hinreichende Bedingung für die gleichgradige Integrierbarkeit.

Das \mathcal{L}^p - Konvergenzproblem für stochastisch konvergente Folgen wird durch folgenden Satz gelöst.

C4 Satz $(X_n)_{n\geq 0}$ sei eine \mathcal{L}^p -Folge, $1\leq p<\infty$, und Y eine reelle ZV mit $X_n\to YP$ -stochastisch. Dann sind äquivalent :

- (i) $\{|X_n|^p : n \in IN_0\}$ ist g.i.
- (ii) $Y \in \mathcal{L}^p \text{ und } X_n \stackrel{\mathcal{L}^p}{\to} Y.$
- (iii) $Y \in \mathcal{L}^p$ und $E|X_n|^p \to E|Y|^p$.

Ferner folgt aus jeder dieser äquivalenten Bedingungen

$$EX_n \to EY$$
.

Beweis. Bauer (1992), S. 144 - 146.

Das Lemma von Fatou hat eine sehr allgemeine Version.

C5 Satz (Fatou) $(X_n)_{n\geq 0}$ sei eine Folge von ZV.

(a) $\liminf X_n$ sei quasi- integrierbar und $\{X_n^-: n \in I\!N_0\}$ sei g.i. Dann gilt

$$E \liminf X_n \le \liminf E X_n$$

(b) $\limsup X_n$ sei quasi - integrierbar und $\{X_n^+: n \in IN_0\}$ sei g.i. Dann gilt

$$\limsup EX_n \leq E \limsup X_n.$$

Beweis. Hoffmann- Jørgensen I (1994), S. 189.

Für Martingaltheorie ist interessant:

C6 Satz Für $Z \in \mathcal{L}^1$ ist

$$B = \{ E(Z|\mathcal{G}) : \mathcal{G} \subset \mathcal{F} \text{ Unter - } \sigma - \text{Algebra } \} \text{ g.i.}$$

Beweis. Wegen |Z|P<< P (|Z|P ist das endliche Maß mit $P\text{-Dichte}\;|Z|$) existiert zu $\varepsilon>0$ ein $\delta>0$ mit

$$P(F) \le \delta, F \in \mathcal{F} \Rightarrow \int_{F} |Z| dP \le \varepsilon.$$

Wähle a > 0 mit $E|Z| \le a\delta$. Aus der Markov- Ungleichung folgt

$$P(|E(Z|\mathcal{G})| > a) \le \frac{1}{a}E|E(Z|\mathcal{G})| \le \frac{1}{a}EE(|Z||\mathcal{G}) = \frac{E|Z|}{a} \le \delta$$

und daher

$$\int\limits_{\{|E(Z|\mathcal{G})|>a\}} E(Z|\mathcal{G})|dP| \leq \int\limits_{\{\ldots\}} |Z|dP| \leq \varepsilon$$

für alle $\mathcal{G} \subset \mathcal{F}$.