Übungen zur Wahrscheinlichkeitsrechnung I

<u>Hinweis:</u> Die Aufgaben werden in der Übung am Dienstag, dem 06.02.2007, mit Beginn 16.15 Uhr im Raum E 45 besprochen.

Aufgabe 31

Sei $(\Omega, \mathfrak{S}, P)$ ein Wahrscheinlichkeitsraum.

- (a) Zeigen Sie: Für $A, B \in \mathfrak{S}$ mit $P(B) \in (0,1)$ sind A, B genau dann unabhängig, wenn $P(A|B) = P(A|B^c)$ gilt.
- (b) Bestimmen Sie alle Ereignisse, die von sich selbst unabhängig sind.

Aufgabe 32

Seien P die Laplace-Verteilung über $\Omega = \{1, 2, 3, 4\}$, $I = \{1, 2, 3\}$ und $A_i = \{i, 4\}$ für $i \in I$. Zeigen Sie:

- (a) $(A_i)_{i \in I}$ ist paarweise unabhängig.
- (b) $(A_i)_{i \in I}$ ist nicht unabhängig.

Aufgabe 33

Seien $(\Omega, \mathfrak{S}, P)$ ein Wahrscheinlichkeitsraum, $n \in \mathbb{N} - \{1\}$ und $A_1, \ldots, A_n \in \mathfrak{S}$. Außerdem sei $(A_i)_{i \in I}$ mit $I = \{1, \ldots, n\}$ unabhängig. Finden Sie im Sinne von Aufgabe 6 (b) zwei Lösungswege für die Berechnung der Wahrscheinlichkeit $P(\bigcup_{i=1}^n A_i)$.

Aufgabe 34

Konstruieren Sie zu dem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{S}, P) = (\mathbb{R}, \mathfrak{B}^1_*, U(0, 1))$ und $I = \{1, 2, 3\}$ drei Ereignisse $A_1, A_2, A_3 \in \mathfrak{S}$ mit folgenden Eigenschaften:

- (a) $(A_i)_{i \in I}$ ist paarweise unabhängig.
- (b) $(A_i)_{i \in I}$ ist nicht unabhängig.

Aufgabe 35 (Satz 4.35)

 $\overline{\text{Seien }(\Omega,\mathfrak{S},P)}$ ein Wahrscheinlichkeitsraum, $n \in \mathbb{N} - \{1\}$, $I = \{1,\ldots,n\}$ und $A_i \in \mathfrak{S}, i \in I$. Dann sind die folgenden Aussagen äquivalent:

- (i) $(A_i)_{i \in I}$ ist unabhängig.
- (ii) Für jede Wahl von B_1, \ldots, B_n mit $B_i \in \{A_i, \Omega\}, i = 1, \ldots, n$, gilt

$$P(B_1 \cap \ldots \cap B_n) = P(B_1) \cdot \ldots \cdot P(B_n).$$

(iii) Für jede Wahl von B_1, \ldots, B_n mit $B_i \in \{A_i, A_i^c\}, i = 1, \ldots, n$, gilt $P(B_1 \cap \ldots \cap B_n) = P(B_1) \cdot \ldots \cdot P(B_n).$

Zeigen Sie die Äquivalenz von (i) und (ii).