Numerik der Differentialgleichungen (WS 2011/12)

Übungsblatt 2 Sachs/Groß Abgabe: Mi, 9. November 2011, bis 8^{30} Uhr, Kasten E6 im Foyer des E-Gebäudes

Aufgabe 2: (8 Punkte)

Beweisen Sie, dass die Trapezregel absolut stabil ist.

Hinweis: Rechenregeln für komplexe Zahlen

Aufgabe 3: (8 Punkte)

Zeigen Sie: Das lineare Mehrschrittverfahren

$$\eta_{i+1} = \sum_{j=0}^{r} a_j \eta_{i-j} + h \sum_{j=-1}^{r} b_j f(x_{i-j}, \eta_{i-j})$$

ist genau dann konsistent, wenn $\sum_{j=0}^{r} a_j = 1$ und $\sum_{j=-1}^{r} b_j - \sum_{j=0}^{r} j a_j = 1$ gilt.

Programmieraufgabe 2:

(8 Punkte)

Die Population des Fichtenknospen-Wurms wird auch, anders als in der Programmieraufgabe 1), durch folgendes saisonales Populationsmodell beschrieben:

$$P'(t) = aKP(t) - aP^{2}(t) + \sqrt{P(t)} \left(\sin^{2}(\frac{\pi}{2}t) - \cos(\frac{\pi}{2}t) \right), \quad 0 \le t \le T$$
$$P(0) = P_{0}.$$

Im folgenden seien wieder a = 0.1, K = 20 und T = 5.

Programmieren Sie mit **MATLAB** das explizite Euler-Verfahren, das Heun-Verfahren und das verbesserte Heun-Verfahren (*), zur Lösung der obigen Differentialgleichung mit den Schrittweiten $h = \frac{T}{2^m}$, m = 1, 2, ..., 13 und Anfangswert $P_0 = 2$. Für jede Schrittweite h berechnen Sie dazu den Fehler

$$\epsilon(h) := \max_{i=1,\dots,n} \left| \eta_i^h - \eta_i^{\frac{h}{2}} \right|,$$

wobei $x_i = 0 + hi$ i = 1, ..., n und n Anzahl der Diskretisierungspunkte, welche aus der Wahl der Schrittweite resultiert. Geben Sie die Quotienten $\epsilon(h)$, $\epsilon(h)/h$, $\epsilon(h)/h^2$, $\epsilon(h)/h^3$, $\epsilon(h)/h^4$ tabellarisch aus. Welche Ordnungen können Sie aus der Tabelle ablesen? Vergleichen Sie ihre Ergebnisse mit denen aus der Programmieraufgabe 1).

Drucken Sie die Graphen des berechneten Populationsbestandes η auf dem Intervall [0,5] für die 2 Schrittweiten $h=\frac{1}{4},\frac{1}{2^{10}}$ aus und beschreiben Sie Ihre Beobachtungen.

Programmieraufgabe 3:

(8 Punkte)

Gegeben sei das folgenden expliziten dreistufige Runge-Kutta-Verfahren:

$$\eta_{i+1} = \eta_i + h \left(\frac{1}{6} k_1 + \frac{4}{6} k_2 + \frac{1}{6} k_3 \right)$$

$$k_1 = f(x_i, \eta_i)$$

$$k_2 = f(x_i + \frac{1}{2} h, \eta_i + \frac{h}{2} k_1)$$

$$k_3 = f(x_i + h, \eta_i - hk_1 + 2hk_2)$$

- i) Prüfen Sie anhand des Anfangswertproblems y'(x) = -y(x) + x + 1, y(0) = 1 (exakte Lösung: $y(x) = e^{-x} + x$) numerisch nach, dass das oben angegebene Runge-Kutta-Verfahren 3. Ordnung für dieses Beispiel auf dem Intervall [0, 10] wirklich die globale Konvergenzordnung 3 besitzt. Werten Sie dazu geeignete Quotienten aus.
- ii) Programmieren Sie zum Aufgabenteil i) die Richardson-Korrektur (Richardson-Extrapolation), indem Sie

$$\widehat{\eta}_i = \eta_i(\frac{h}{2}) + \frac{\eta_i(\frac{h}{2}) - \eta_i(h)}{2^k - 1}$$

berechnen. Wobei k=3 die Ordnung des zugrunde liegenden Verfahrens ist.

Welche Konvergenzordnung können Sie numerisch nachweisen? Werten Sie dazu ebenfalls geeignete Quotienten aus und vergleichen Sie Ihre Ergebnisse mit denen aus Aufgabenteil i).

Programmierhinweise

Laden Sie den Matlab-Quellcode (als txt-file abgespeichert !!!) versehen mit Namen und Matrikelnummer im StudIP hoch. Die abzugebende Datei muss folgenden Namen haben und dann als Textdatei .txt abgespeichert in StudIP hochgeladen werden:

NachnameMatrikelnummerAufgabennummer.txt

In der den ersten Zeilen des m-file stehen mit % auskommentiert:

- Name
- Matrikelnummer
- Aufgabennummer
- Datum

Drucken Sie ebenfalls den die Ergebnisse (Tabellen und Graphen) der Programmieraufgabe aus und geben Sie diese zusammen mit dem Übungszettel ab.

Kommentieren Sie immer die Ergebnisse!