Numerik für Lehramt(SoSe 2012)

Übungsblatt 4

Abgabe: Di, 15. Mai 2012, bis 8^{30} Uhr, $Kasten\ E4$

Groß/Sachs

im Foyer des E-Gebäudes

Aufgabe 7: (8 Punkte)

Es seien A und B Matrizen und $|||\cdot|||$ die sogenannte abgeleitete Matrix-Norm

$$|||A||| = \sup_{\|x\|=1} ||Ax|| = \sup_{x \neq 0} \frac{||Ax||}{\|x\|}.$$

Beweisen Sie folgende Eigenschaften:

- i) $|||A||| \ge 0$
- ii) $|||A||| = 0 \Leftrightarrow A = 0$
- iii) $|||\alpha A||| = |\alpha||||A||||$ für alle $\alpha \in \mathbb{R}$
- iv) $|||A + B||| \le |||A||| + |||B|||$
- v) $|||Ax||| \le |||A|||||x||$
- vi) $|||AB||| \le |||A|||||B|||$

Aufgabe 8: (8 Punkte)

Beweisen Sie das Korollar zum Banach Lemma aus der Vorlesung. Seien dazu $A, B \in \mathbb{R}^{n \times n}$ mit $|||A^{-1}B||| < 1$, $||| \cdot |||$ eine konsistente Matrixnorm. Dann gilt

- i) $(A+B)^{-1}$ existient.
- ii) $|||(A+B)^{-1}||| \le \frac{|||A^{-1}|||}{1-|||A^{-1}B|||}$
- ii) $|||(A+B)^{-1} A^{-1}||| \le \frac{|||A^{-1}B||||||A^{-1}|||}{1-|||A^{-1}B|||}$

Aufgabe 9: (2+3 Punkte)

Seien $L_1, L_2 \in \mathbb{R}^{n \times n}$ untere Dreiecksmatrizen. Beweisen Sie die folgenden Aussagen:

- i) $L_1 \cdot L_2$ ist eine untere Dreiecksmatrix.
- ii) Falls L_1 invertier bar ist, so ist auch L_1^{-1} eine untere Dreiecksmatrix.