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Abstract

Using graph products we present an O(|V |2|E| + |V |3 log |V |) separation algorithm for
the nonsimple 1-wheel inequalities by Cheng and Cunningham (1997) of the stable set
polytope, which is faster than their O(|V |4) algorithm.

There are two ingredients for our algorithm. The main improvement stems from a
reduction of separation problem to multiple shortest path problems in an auxillary graph
having only 6|V | vertices and 9|E| arcs, thereby preserving low sparsity. Then Johnson’s
algorithm can be applied exploiting that preserved sparsity of the original graph which
is maintained in the auxillary graph.

In contrast, Cheng and Cunningham’s auxillary graph is by construction dense, |E| =
O(|V |2), so application of Johnson’s algorithm provides no large improvement.
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1 INTRODUCTION 2

Many important application problems contain large subproblems of the following
binary packing type:

max c>x

s.t. Ax ≤ b
x ∈ {0, 1}n

(BPP)

where (A, b) is a matrix of nonnegative integers. In the process of solving (BPP) by a
branch-and-cut algorithm, it is for the cutting-part helpful to associate with it Padberg’s
conflict/intersection graph, see [1, 2]. Let V = {1, . . . , n} and any pair of vertices i, j is
adjacent if for the columns ai and aj holds that ai + aj 6≤ b. We denote the resulting
conflict graph with GA,b. Now any integral and feasible x∗ is also a feasible solution for
the stable set polytope of GA,b. Hence the stable set polytope of GA,b provides an integral
relaxation of (BPP).

1. Introduction

Let G = (V,E) be a simple connected graph with |V | = n ≥ 2 and |E| = m. A subset
of V is called stable if it does not contain adjacent vertices of G. The incidence vector
of a set N ⊆ V is χN ∈ {0, 1}V such that χNv = 1 if v ∈ N and otherwise χNv = 0. The
stable set polytope of G, denoted by STAB(G), is the convex hull of incidence vectors
of stable sets of G. Some well-known valid inequalities for STAB(G) include the trivial
inequalities (xv ≥ 0 for v ∈ V ), the odd cycle inequalities (

∑
v∈C xv ≤ k where C is the

vertex-set of an odd cycle of length 2k + 1), and the clique inequalities (
∑
v∈K xv ≤ 1

where K induces a clique). A clique inequality is called edge inequality if the clique
has just two vertices. Let ESTAB(G) := {x ∈ [0, 1]V : xu + xv ≤ 1 ∀uv ∈ E} and
CSTAB(G) := {x ∈ ESTAB(G) : x fulfills the odd cycle inequalities}.

The separation problem for a class C of valid inequalities for a class of polytopes P is:
Given x∗ ∈ P , does x∗ violate one of the inequalities in C? If the answer is yes, exhibit
such an inequality. Solving this problem is important to use the inequalities in a branch-
and-cut approach for maximizing a linear function over some general integer program or
STAB(G). (See, for example, Barahona et al. [3] and Nemhauser and Sigismondi [4].)
Furthermore, if the separation problem for C is solvable in polynomial time, then the
linear optimization problem over C can be solved in polynomial time, see Grötschel et al.
[5]. The separation problem for C = {trivial and edge inequalities} can obviously be
solved in O(m) time. If x∗ satisfies the trivial and edge inequalities, then one can decide
whether x∗ violates an odd cycle inequality in polynomial time, as was first observed
by Grötschel and Pulleyblank [6], Grötschel et al. [5]. Odd cycle inequalities can be
separated by n applications of the fast Dijkstra algorithm by Fredman and Tarjan [7] in
time O(nm + n2 log n). Hence the separation problem for the trivial, the edge, and the
odd cycle inequalities can be solved in the same time.

Cheng and Cunningham [8, 9] describe a way to separate the 1-wheel inequalities in
time O(n4). They achieve this, by reducing the separation problem to multiple shortest
path problems in dense graphs on O(n) vertices.

In the present study we reduce the complexity of the separation problem of 1-wheels
down to O(n2m+n3 log n). As stable set problems often originate from the conflict graphs
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of more general integer programs, and as these conflict graphs tend to be sparse, this
faster algorithm is important for practical applications.

In contrast to Cheng and Cunningham’s approach we construct a new auxillary graph
that is the categorical product of the original graph and a gadget on just 6 vertices; sep-
aration boils down to shortest path problems in this auxillary graph solved by Johnson’s
algorithm. As the runtime of Johnson’s algorithm depends on the number of edges of
the auxillary graph, which for our construction is just a constant multiple of the original
number of edges, our approach is able to exploit sparsity of the original graph.

Plain application of Johnson’s algorithm to Cheng and Cunningham’s auxillary graph
can not achieve a comparable speed-up, as their auxillary graph is dense by construction.

Our approach will be to consider a least-weight wheel problem and its reduction to
a shortest path problem in a that product graph. Then we show that the separation
problem reduces to the least-weight wheel problem.
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W (0; 5; 2; 1, 4, 5, 6, 11)

1

9

2

3

4

0, 7

56

11, 8

10

(c) nonsimple odd wheel obtained by
identifying vertices 0, 7 and 8, 11

Figure 1: From a wheel to a simple odd (11, 5)-wheel W (0; 5; 2; 1, 4, 5, 6, 11) to a nonsimple odd wheel
obtained by identifying vertices 0, 7 and 8, 11.

2. Wheels

Cheng and Cunningham [8, 9] consider a wheel with (2k+ 1) vertices and hub h (for
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an example of a wheel on 5 vertices and hub, see Figure 1(a)) and its subdivisions, see
Figure 1(b). Let 1, . . . , 2k′ + 1 be the rim where the spoke ends are l1 up to l2k+1, ordered
so that 1 = l1 < l2 < · · · < l2k+1 ≤ 2k′+ 1. Denote the spoke paths connecting h to some
li by Pli and their subpaths that exclude both ends by P̊li . With |P̊li | we denote the
number of vertices in P̊li . Let the interior of the spoke paths be pairwise disjoint and let
the interior of the spoke paths be disjoint to the rim. A wheel has to fulfill additionally the
condition that the cycles h, P̊li , li, li+1, . . . , li+1, P̊li+1 , h are odd for i = 1, 2, . . . , 2k+1; for
a complete specification we denote it by W (h; k′; k; l1, l2, . . . , l2k+1;Pl1 , Pl2 , . . . , Pl2k+1

).
Let E be the set of the li for which the paths Pli have an even number of edges, and

let O be the set of remaining spoke ends. Cheng and Cunningham [8, 9] show that the
inequalities

kxh +

2k′+1∑
i=1

xi +
∑
i∈E

xi +

2k+1∑
i=1

x(P̊li) ≤ k′ +
|E|+

∑2k+1
i=1 |P̊li |
2

(IA)

(k + 1)xh +

2k′+1∑
i=1

xi +
∑
i∈O

xi +

2k+1∑
i=1

x(P̊li) ≤ k′ +
|O|+ 1 +

∑2k+1
i=1 |P̊li |

2
(IB)

are valid and they give sufficent conditions for them to induce facets. (Here we use x(P̊ )

for a walk P = v0 − · · · − vk+1 as a shorthand for
∑k
i=1 xvi .)

Proposition 1 ([8, Prop. 2.2]). Let
∑n
i=1 avixvi ≤ a0 be a valid inequality for STAB(G)

and let v1 and v2 be two nonadjacent vertices of G. If H is obtained from G by identifying
v1 and v2 to a single vertex v1,2, then (av1 + av2)xv1,2 +

∑n
i=3 avixvi ≤ a0 is valid for

STAB(H).

Therefore, when speaking of general or nonsimple wheels we will permit the identifi-
cation of nonadjacent vertices where the coefficient of the new vertex is the sum of the
coefficients of the identified vertices. The next example motivates how to avoid E for IA
and O for IB by going nonsimple.

Example 2. Consider the simple wheel of Figure 2(a) with E = {1} and its IA inequality

1x0 +
∑6
i=1 xi + x1 = 1x0 +

∑6
i=2 xi + 2x1 ≤ 3. The simple wheel in Figure 2(b) has the

IA inequality x0 +
∑8
i=2 xi ≤ 3 with E = ∅. Now, by identifying the two vertices 7 and 8,

we obtain the nonsimple wheel of Figure 2(c) and the inequality according to Lemma 1

is x0 +
∑6
i=2 xi + 2x7,8 ≤ 3 which is the same (when relabeling the vertex {7, 8} by 1) as

the original inequality that involved E 6= ∅.

More formally we obtain:

Lemma 3. For a wheel and its nonsimple IA-inequality we can assume without loss of
generality E = ∅.

Proof. Given a wheel with v` ∈ E and its IA-inequality I. Now consider the wheel
resulting from contracting the edge of P` incident with v` and then subdividing the two
rim edges incident with v` once (the resulting vertices are called vi and vj). Notice that

another wheel results, |E| decreases by one, |P̊`| decreases by one and k′ increases by one;
so all together, we obtain a new wheel with E ′ = E \{v`}. The right hand side of the new
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Figure 2: Getting away with E = ∅ for IA.

IA-inequality I ′ equals the right hand side of I. Now if the two new vertices vi, vj are
identified (hence the coefficient of vi,j becomes two) then the inequality I results, now
represented as a nonsimple wheel IA-inequality I ′′ with |E ′′| < |E|.

Since Cheng and Cunningham [9, Thm. 4.2] proved that for simple wheels the in-
equality IB can induce facets only if the odd spokes have length at least 3, it is natural
to restrict ourselves to these.

Lemma 4. For a wheel without odd spokes of length < 3 its IB inequality is representable
by another IB-inequality with O = ∅.

As the proof is analogous to that of Lemma 3 we omit the repetition. In the sequel
we will assume E = ∅ for (IA) and O = ∅ for (IB) permitting more concise notation.
For (IA) we consider those simple wheels W (h; k′; k; l1, l2, . . . , l2k+1;Pl1 , Pl2 , . . . , Pl2k+1

)
with E = ∅ and call them plain odd (2k′ + 1, 2k + 1)-wheels or shorter plain odd wheels.
Clearly they fulfill lj+1 − lj is odd for j = 1, . . . , 2k and that all spoke paths are odd.
Similarily, for (IB) we consider those simple wheels with O = ∅ and call them plain even
(2k′ + 1, 2k + 1)-wheels. Clearly they fulfill lj+1 − lj is odd for j = 1, . . . , 2k and that
all spoke paths are even. So we obtain for an odd wheel W (h; k′; k; 1 = l1 < l2 < · · · <
l2k+1 ≤ 2k′ + 1;Pl1 , Pl2 , . . . , Pl2k+1

) the following form of inequality (IA):

kxh +

2k′+1∑
i=1

xi +

2k+1∑
i=1

x(P̊li) ≤ k′ +
∑2k+1
i=1 |P̊li |

2
, (I ′A)
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and for an even wheel the inequality (IB) simplifies to

(k + 1)xh +

2k′+1∑
i=1

xi +

2k+1∑
i=1

x(P̊li) ≤ k′ +
1 +

∑2k+1
i=1 |P̊li |
2

. (I ′B)

Because of Proposition 1, we will focus on general (that is, possibly nonsimple) plain
odd/even (2k′ + 1, 2k + 1)-wheels. Define

WASTAB(G) :={x ∈ CSTAB(G) : x fulfills all plain nonsimple I ′A-inequalities}
WBSTAB(G) :={x ∈ CSTAB(G) : x fulfills all plain nonsimple I ′B-inequalities}.

3. Separation of I′
A and I′

B

Consider the following form of the four-fold of (I ′A) for an odd (2k′+ 1, 2k+ 1)-wheel
W (h; k′; k; 1 = l1 < l2 < · · · < l2k+1 ≤ 2k′ + 1;Pl1 , Pl2 , . . . , Pl2k+1

) :

2− 2xh + (4k + 2)xh + 4

2k′+1∑
i=1

xi + 4

2k+1∑
i=1

x(P̊li) ≤ (4k′ + 2) + 2

2k+1∑
i=1

|P̊li |

Here and henceforth we identify the indices of spoke ends modulo 2k + 1 so that index
2k + 2 is identified with 1, index 2k + 3 is identified with 2 etc; reshuffling yields:

2− 2xh ≤
2k+1∑
j=1

(
−2xh +

(
|P̊lj | − 2x(P̊lj )

)
+
(
|P̊lj+1

| − 2x(P̊lj+1
)
)

+ 2

lj+1−1∑
i=lj

(1− xi − xi+1)

)
. (1)

Similarly, one obtains for an even wheel and (I ′B):

2xh ≤
2k+1∑
j=1

(
−2xh +

(
|P̊lj | − 2x(P̊lj )

)
+
(
|P̊lj+1 | − 2x(P̊lj+1)

)
+ 2

lj+1−1∑
i=lj

(1− xi − xi+1)

)
. (2)

Call the right hand sides of equations (1) and (2) the weights of the odd/even wheel with
respect to x. Notice that except for the fact that in (1) the P -paths are odd and in (2)
they are even, the functional form of the weight is the same. Now we prove for given
x̄, h, rim and spoke ends a property of the spoke walks Plj in a most violated odd/even
wheel inequality.

Lemma 5 (Theorem 3.5 [9]). For a given graph G and x̄ ∈ ESTAB(G) fix a hub h, an
odd cycle v1, v2, . . . , v2k′+1, and spoke ends 1 = l1 < l2 < · · · < l2k+1 ≤ 2k′ + 1. Among
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all odd wheels with this hub and rim and these spoke ends consider one (with some Plj )
such that

2− 2x̄h ≤
2k+1∑
j=1

(
−2x̄h +

(
|P̊lj | − 2x̄(P̊lj )

)
+
(
|P̊lj+1 | − 2x̄(P̊lj+1)

)
+ 2

lj+1−1∑
i=lj

(1− x̄vi − x̄vi+1)

)
(I ′A)

is most violated, that is the right hand side is minimal. Then Plj is a shortest odd walk
from h to vlj with respect to the edge weights 1− x̄u− x̄v, which are nonnegative because
of x̄ ∈ CSTAB(G).

Similarly for a most violated inequality I ′B for fixed hub and spoke ends it follows that
Plj is a shortest even walk (among all even walks with at least 2 edges) from h to vlj with
respect to the edge weights (1− x̄u − x̄v).

Proof. Consider the odd wheelW (h; k′; k; 1 = l1 < l2 < · · · < l2k+1 ≤ 2k′+1;Pl1 , Pl2 , . . . , Pl2k+1
)

and suppose P ′lj is shorter than Plj , that is
∑
uv∈E(P ′lj

)(1− x̄u − x̄v) <
∑
uv∈E(Plj

)(1−
x̄u − x̄v) or equivalently

2 + |P̊ ′lj | − 2x̄(P̊ ′lj )− x̄h − x̄vlj < 2 + |P̊lj | − 2x̄(P̊lj )− x̄h − x̄vlj .

This implies |P̊ ′lj | − 2x̄(P̊ ′lj ) < |P̊lj | − 2x̄(P̊lj ). But now the odd wheel W ′ that results

from W by replacing Plj by P ′lj has less weight than the supposedly minimum weight

wheel W and therefore is more violated than W. Contradiction! The argument for (I ′B)
is analogous.

From now on we assume for some fixed x̄ ∈ ESTAB(G) that we have computed
shortest odd walks P 1

h,k and shortest even walks P 0
h,k (the latter having at least two

edges) with respect to edge weights (1 − x̄u − x̄v) for all k ∈ V ; if no such P 1
h,k or

P 0
h,k exists, we set |P̊ 1

h,k| − 2x(P̊ 1
h,k) = +∞ or |P̊ 0

h,k| − 2x(P̊ 0
h,k) = +∞ respectively.

(Alternatively, we could remove that edge temporarily from the graph, but as we are
mainly concerned with walks shorter than 2− 2x̄h and 2x̄h respectively, those involving
arcs with |P̊ 1

h,k| − 2x(P̊ 1
h,k) = +∞ or |P̊ 0

h,k| − 2x(P̊ 0
h,k) = +∞ would never be used.)

Our approach towards polynomial separation is now the following:

• A most violated wheel is by previous results determined by its hub, rim and the
spoke ends on the rim (the spokes themselves do not matter, since by Lemma 5,
they are just shortest walks of appropriate parity).

• Hence the task of finding a most violated wheel for a given hub reduces to determine
a rim and the spoke ends.

• Hence we will not have to worry about the spokewalks as long as we manage to
distribute their weight along the edges of the rim so that they sum up correctly.

• This requires, that in the original graph an edge will have a weight depending on
its function (spoke end-to-spoke end, spoke end-to-internal, internal-to-internal).
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• For a given rim-edge of a given wheel, we know of course ex-post what function
it has; so first we will distribute the weights ex-post and later we have to see
by a duplication procedure, how to distribute different weights to the same edge
depending on the (ex-ante) unkown function it might take in a wheel.

Now we have to analyze the summand −2xh + |P̊lj | − 2x(P̊lj ) + |P̊lj+1
| − 2x(P̊lj+1

) +

2
∑lj+1−1
i=lj

(1−xi−xi+1) from the right handsides of equations (1) and (2) more carefully.
First we do an example about how to distribute the weight to the edges of the rim of a
wheel, then we prove the insight.

Example 6. For the plain nonsimple wheel W (0; 1; 1; 1 < 4 < 5) with k = 1 of Fig-
ure 3(a) the plain inequality (I ′A) would be:

1xh + (x1 + x2 + x3 + x4 + x5 + x6 + x1) + (x8 + x9) ≤ 3 +
2

2
.

We have already form (1) and its fourfold is::

2− 2x0 ≤(−2x0 + (0) + (2− 2x8 − 2x9) + 2(1− x1 − x2) + 2(1− x2 − x3) + 2(1− x3 − x4))

+ (−2x0 + (2− 2x8 − 2x9) + (0) + 2(1− x4 − x5))

+ (−2x0 + (0) + (0) + 2(1− x5 − x6) + 2(1− x6 − x2) + 2(1− x2 − x1))

With this representation, we have a way to distribute the total weight of the wheel ac-
cording to the three lines on the right to the three rim walks 1− 2− 3− 4 and 4− 5 and
5− 6− 2− 1, respectively. In Figure 3(b) we dropped the spokes.

The situation makes pretty clear that we want to associate ex-post the weight (−2x0 +
(2− 2x8 − 2x9) + (0) + 2(1− x4 − x5)) to the edge 4− 5. For the walk 1− 2− 3− 4 and
the weight

(−2x0 + (0) + (2− 2x8 − 2x9) + 2(1− x1 − x2) + 2(1− x2 − x3) + 2(1− x3 − x4))

it is less clear how to distribute the weight to the edges. Certainly, nonnegative edge-
weights are preferable, as they permit faster shortest path algorithms. Another desidera-
tum is, that the weights of internal edges of a rimwalk, should not depend on the previous
and next spoke.

One way to distribute them is to assign to 1− 2, 2− 3, 3− 4 the weights

2(1− x1 − x2)− 2x0 + (0)

2(1− x2 − x3)

2(1− x3 − x4)− 0x0 + 2(1− x8 + x9).

The second weight is clearly nonnegative if x fulfills the edge inequalities, since x2+x3 ≤ 1
is of course the same as 1−x2−x3 ≥ 0. At first sight, it seems awkward, that the weights
of the first and last edge are not symmetric regarding x0 (the first edge has −2x0 whereas
the last one has −0x0). But the asymmetric distribution of x0 has the advantage that
the last edge weight is also nonnegative, if x fulfills edge inequalities. Only the first edge
might (actually, should) have negative weight, but we will see later how asymmetry makes
the negative weights more tractable.
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Depending on whether we consider inequality (I ′A) or (I ′B) the P̊ would be P̊ 1 or P̊ 0.
If lj+1 − lj = 1 (i.e., there is a single edge between spoke ends) then we have

− 2xh + |P̊h,lj | − 2x(P̊h,lj ) + |P̊h,lj+1 | − 2x(P̊h,lj+1) + 2

lj+1−1∑
i=lj

(1− xi − xi+1)

= 2(1− xlj − xlj+1)− 2xh + |P̊h,lj | − 2x(P̊h,lj ) + |P̊h,lj+1 | − 2x(P̊h,lj+1)

and going from spoke end lj to lj+1 incurs a cost of 2(1− xlj − xlj+1
)− 2xh + |P̊h,lj | −

2x(P̊h,lj ) + |P̊h,lj+1
| − 2x(P̊h,lj+1

) along the single edge. Notice that for x̄ ∈ CSTAB(G)
this weight is nonnegative.

Otherwise lj+1 − lj ≥ 3 (i.e., there are at least three edges between the spoke ends):

− 2xh + |P̊h,lj | − 2x(P̊h,lj ) + |P̊h,lj+1
| − 2x(P̊h,lj+1

) + 2

lj+1−1∑
i=lj

(1− xi − xi+1)

=2(1− xlj − xlj+1 − xh) + |P̊h,lj | − 2x(P̊h,lj )

+ 2

lj+1−2∑
i=lj+1

(1− xi − xi+1)

+ 2(1− xlj+1−1 − xlj+1
− 0xh) + |P̊h,lj+1

| − 2x(P̊h,lj+1
).

This suggests to distribute the weight differently to the edges of lj − (lj + 1)− · · · −
(lj+1 − 1) − lj+1. So here we would want an edge {lj , lj + 1} leaving the spoke endto

contribute (2 − 2xh − 2xlj − 2xlj+1) + |P̊h,lj | − 2x(P̊h,lj ), the internal edges {i, i + 1}
not incident with the spoke ends to contribute 2(1 − xi − xi+1), and the final edge
{lj+1− 1, lj+1} to contribute (2− 2xlj+1−1− 2xlj+1

) + |P̊h,lj+1
| − 2x(P̊h,lj+1

). Notice that
the second and third weight are positive, if x̄ fulfills the edge inequalities, but the first
weight could be negative.

Given, that we know now a way to distribute the weights to edges ex-post, we need
to find a way to achieve the same ex-ante. Towards this, we will investigate the digraph
F from Figure 4, and show, that there is a nice map from the rim of a wheel to it. Then,
to exploit it, we will extend the map to a map from wheels to cycles in the product of
the graph with F .

Define the digraph F by Figure 4, where undirected edges represent pairs of antipar-
allel arcs.

Theorem 7 (Homomorphism). Given a wheel W with rim v1, v2, . . . , v2k′+1 There ex-
ists a “homomorphism” φ of v1, v2, . . . , v2k′+1, v2k′+2 (where we treat v1 and v2k′+2 as
different) to F so that

1. for all 1 ≤ i ≤ 2k′ + 1 the pair (φ(vi), φ(vi+1)) is either a forward arc in F or one
of the undirected edges,

2. for all spoke-ends li holds φ(vli) ∈ {0, 3}

3. φ(v1) = 0 and φ(v2k′+2) = 3,
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(b) Here the hub and the spokes are re-
moved leaving only the rim of the wheel.

Figure 3: A plain nonsimple wheel W (0; 1; 1; 1 < 4 < 5) with k = 1 and its rim highlighted on the right.

4. φ(v) ∈ {0, 3} implies that v is a spoke end, and

5. |φ−1(0)|+ |φ−1(3)| ≥ 4.

The same holds for even wheels.

Proof. Consider an odd (2k′ + 1, 2k + 1)-wheel W (h; k′; k; 1 = l1 < l2 < · · · < l2k+1 ≤
2k′ + 1;P 1

l1
, P 1

l2
, . . . , P 1

l2k′+1
) of G with rim v1, . . . , v2k′+1. Start with setting φ(v1) = 0;

now, given some φ(vj), we have to choose φ(vj+1) :
Case 1: If vj is a spoke end (hence φ(vj) ∈ {0, 3}) and vj+1 is another spoke end,

then we set φ(vj+1) = (φ(vj) + 3 mod 6).
Case 2: If vj is a spoke end (hence φ(vj) ∈ {0, 3}) and vj+1 is no spoke end, then we

set φ(vj+1) equal to φ(vj) + 1.
Case 3: If vj and vj+1 are both no spoke ends, that is, φ(vj) ∈ {1, 2, 4, 5}, then we

set φ(vj+1) so that either {φ(vj), φ(vj+1)} = {1, 2} or {φ(vj), φ(vj+1)} = {4, 5}.
Case 4: If finally vj is not a spoke end but vj+1 is a spoke end, then we have to argue

that φ(vj) equals 2 or 5 since otherwise we can not reach in that step one of the nodes
3 or 0. So suppose φ(vj) ∈ {1, 2}, hence the most recently visited spoke end had second
component 0. By assumption on the wheel the diwalk from that spoke end to vj is even.
Therefore φ(vj) has to be 2.

1 2 3

0 5 4

Figure 4: The digraph F (undirected edges represent pairs antiparallel arcs).
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Finally, as the number of nodes of the rim is odd, φ(v2k′+2) = 3. (In this way, we
have constructed a corresponding 0 3 diwalk in D.) As every subdivided wheel has at
least 3 spoke ends, the diwalk contains at least twice the vertices 0 and twice the 3.

The previous result demonstrates already a way to get from wheels to walks. To
utilize this way further we define a product of graphs: The categorical product G1 ·D2

of a graph G1 and a digraph D2 is defined by V (G1 ·D2) = V (G1)× V (D2) and A(G1 ·
D2) = {((u1, u2), (v1, v2)) : (u1, v1) ∈ E(G1) and (u2, v2) ∈ A(D2)}. For G = (V,E)
consider the digraph D := G · F, with F depicted in Figure 4. We want to embed the
violated-odd/even-wheel-with-hub-h-finding-task into this graph. Interpret vertices of
type V ×{0, 3} as vertices that correspond to spoke ends. Define for any given x̄ ∈ QV (G)

and any vertex h ∈ V the weighted digraph Dh := D where the arc e = ((u, i), (v, j))
has the following weight:

w1
e =



2(1− x̄u − x̄v)− 2x̄h

+|P̊ 1
h,u| − 2x̄(P̊ 1

h,u) + |P̊ 1
h,v| − 2x̄(P̊ 1

h,v) if {i, j} = {0, 3}
2(1− x̄u − x̄v)− 2x̄h + |P̊ 1

h,u| − 2x̄(P̊ 1
h,u) if (i, j) ∈ {(3, 4), (0, 1)}

2(1− x̄u − x̄v)− 0x̄h + |P̊ 1
h,v| − 2x̄(P̊ 1

h,v) if (i, j) ∈ {(2, 3), (5, 0)}
2(1− x̄u − x̄v). if {i, j} ∈ {{1, 2}, {4, 5}}

Notice that these weights pick up the idea of Example 6, generalize them and put them
accordingly into the product-graph. We define another set of weights w0 analogously in
terms of P̊ 0 for separation of I ′B.

Lemma 8. For any diwalk U = (v1, i1) − (v2, i2) − · · · − (vq, iq) in Dh with {i1, iq} =
{0, 3} 63 i2, . . . , iq−1, with q ≥ 2, and x̄ ∈ ESTAB(G) holds:

(a) q is even.

(b) w1(U) :=
∑q−1
j=1 w

1
vj ,vj+1

= −2x̄h+ |P̊ 1
h,v1
|−2x̄(P̊ 1

h,v1
)+2

∑q−1
i=1 (1− x̄vi− x̄vi+1

)+

|P̊ 1
h,vq
| − 2x̄(P̊ 1

h,vq
) and the same for w0(U) in terms of P̊ 0.

(c) If x̄ ∈ CSTAB(G) then w1(U) ≥ 0 ≤ w0(U).
(d) If x̄ ∈ CSTAB(G) and v1 = vq, then w1(U) ≥ 2− 2x̄h and w0(U) ≥ 2x̄h.

Proof. Clearly, there are only the two equivalent cases (i1, iq) = (0, 3) and (i1, iq) = (3, 0);
so assume the first. Claim (a) follows immediately from the simple observation that Dh is
bipartite (partition the vertices of Dh according to the parity of their second component)
with (v1, 0) and (vq, 3) in different parts; let r = q/2.

The case of q = 2 of Claim (b) follows readily from the definition of the weights.
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Otherwise q ≥ 4 :

w1(U) :=

q−1∑
j=1

w1
(vj ,ij),(vj+1,ij+1)


=

w1
(v1,i1),(v2,i2) +

q−2∑
j=2

w1
(vj ,ij),(vj+1,ij+1) + w1

(vq−1,iq−1),(vq,iq)


= (2− 2x̄h − 2x̄v1 − 2x̄v2) + |P̊ 1

h,v1 | − 2x̄(P̊ 1
h,v1) + 2

q−2∑
i=2

(1− x̄vi − x̄vi+1)

+ (2− 2x̄vq−1 − 2x̄vq ) + |P̊ 1
h,vq | − 2x̄(P̊ 1

h,vq ); (3)

the last step follows from the definition of w and from the observation that i2, . . . , iq−1 ∈
{1, 2}; the argument for w0 is the same.

Claim (c) is clearly valid, if there is no odd path from h to v1 or h to vq since then

by definition either |P̊ 1
h,v1
| − 2x̄(P̊ 1

h,v1
) = +∞ or |P̊ 1

h,vq
| − 2x̄(P̊ 1

h,vq
) = +∞. So if these

odd paths exist rearrange terms in (3) to obtain

w1(U)

=− 2x̄h + 2

2r−1∑
i=1

(1− x̄vi − x̄vi+1
) + |P̊ 1

h,v1 | − 2x̄(P̊ 1
h,v1) + |P̊ 1

h,vq | − 2x̄(P̊ 1
h,vq )

=− 2x̄h + 2

r∑
i=1

(1− x̄v2i−1
− x̄v2i) + 2

r−1∑
i=1

(1− x̄v2i − x̄v2i+1
)

+ |P̊ 1
h,v1 | − 2x̄(P̊ 1

h,v1) + |P̊ 1
h,vq | − 2x̄(P̊ 1

h,vq )

=2

(
r +
|P̊ 1
h,v1
|+ |P̊ 1

h,vq
|

2
− x̄h −

2r∑
i=1

x̄vi − x̄(P̊ 1
h,v1)− x̄(P̊ 1

h,vq )

)

+ 2

r−1∑
i=1

(1− x̄v2i − x̄v2i+1)

The first term’s nonnegativity is equivalent to x̄h +
∑2r
i=1 x̄vi + x̄(P̊ 1

h,v1
) + x̄(P̊ 1

h,vq
) ≤

r +
|P̊ 1

h,v1
|+|P̊ 1

h,vq
|

2 which is just an odd cycle inequality for h, P̊ 1
h,v1

, v1, . . . , v2r, P̊
1
h,v2r

, h
that is fulfilled by assumption. The nonnegativity of the second term is implied by a
bunch of edge constraints of type x̄v2i + x̄v2i+1

≤ 1. The argument for w0 is the same.
Claim (d) for w1 : As there is no arc between (v1, 0) and (v1, 3) in Dh (since G has
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no loops), it follows that q ≥ 3. Hence the claim is equivalent to

2− 2x̄h ≤w1(U)

= −2x̄h + 2

2r−1∑
i=1

(1− x̄vi − x̄vi+1
)

+ |P̊ 1
h,v1 | − 2x̄(P̊ 1

h,v1) + |P̊ 1
h,vq | − 2x̄(P̊ 1

h,vq )

2 ≤2

2r−1∑
i=1

(1− x̄vi − x̄vi+1)

+ (|P̊ 1
h,v1 | − 2x̄(P̊ 1

h,v1)) + (|P̊ 1
h,vq | − 2x̄(P̊ 1

h,vq )).

As nonnegativity of the last two terms in parentheses is implied by the edge inequalities,
it suffices to prove 2 ≤ 2

∑2r−1
i=1 (1− x̄vi − x̄vi+1

), which by v1 = v2r reduces to

4

(
2r−1∑
i=1

x̄vi ≤ r − 1

)
.

This is equivalent to the odd C2r−1 inequality through v1, . . . , v2r−1 being fulfilled, which
is a consequence of x̄ ∈ CSTAB(G).

For w0 the claim is equivalent to

2 ≤2

2r−1∑
i=1

(1− x̄vi − x̄vi+1
)

+ (|P̊ 0
h,v1 |+ 1− 2x̄h − 2x̄(P̊ 0

h,v1)) + (|P̊ 0
h,vq |+ 1− 2x̄h − 2x̄(P̊ 0

h,vq )).

As nonnegativity of the last two terms in parentheses is implied by the edge inequalities

with v1 = v2r it suffices to prove: 4
(∑2r−1

i=1 x̄vi ≤ r − 1
)
. This is equivalent to the

odd C2r−1 inequality through v1, . . . , v2r−1 being fulfilled which is a consequence of
x̄ ∈ CSTAB(G).

Lemma 9. Every (nonsimple) odd wheel W (h; k′; k; 1 = l1 < l2 < · · · < l2k+1 ≤ 2k′ +
1;P 1

l1
, P 1

l2
, . . . , P 1

l2k′+1
) of G using shortest spoke paths corresponds to a (v1, 0)  (v1, 3)

diwalk U (containing at least 3 vertices with second component 0 or 3) in Dh of the same
finite weight with respect to w and x̄ ∈ CSTAB(G) and vice-versa. An analogous state-
ment holds for (nonsimple) even (2k′ + 1, 2k + 1)-wheels W (h; k′; k; 1 = l1 < l2 < · · · <
l2k+1 ≤ 2k′ + 1;P 0

l1
, P 0

l2
, . . . , P 0

l2k′+1
) and shortest (v1, 0) (v1, 3) diwalks (containing at

least 3 vertices with second component 0 or 3) with respect to w0 too.

Proof. Two properties of (v, 0) (v, 3) walks U = (v1 = v, i1 = 0)−· · ·−(vp = v, ip = 3)
in Dh are:

1. Since the graph underlying Dh is bipartite (as F is) and the sequence i1, i2, . . . , ip
is alternating beetween odd and even starting with even and ending with odd, p has to
be even.
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2. As the second component of the start vertex of every arc in Dh from a vertex with
second component from the set {1, 2, 3} to one with second component from {4, 5, 0}
equals 3 and any arc from {4, 5, 0} to {1, 2, 3} starts in 0 we see that |{j ∈ {1, . . . , p} : ij ∈
{0, 3}}| is even.

We start with the reverse direction and let k = (|{j ∈ {1, . . . , p} : ij ∈ {0, 3}}| − 2)/2
and k′ = (p − 2)/2. By the assumption that the diwalk U meets at least three vertices
with second component 0 or 3 it follows that k ≥ 1; trivially holds k′ ≥ k. Now let
l1, . . . , l2k+2 be the indices l corresponding to il ∈ {0, 3} in the order in which they are
encountered by the diwalk U.

We want to argue that v1, . . . , v2k′+1 together with the spoke ends vl1 , . . . , vl2k+1
form

an odd (2k′+ 1, 2k+ 1)-wheel. Consider the subdiwalk from vlj to vlj+1
; as both vertices

have second component {0, 3}, we know by Lemma 8(a) that the subwalk from (vlj , ilj )
to (vlj+1 , ilj+1) in U is odd, that is ilj+1 − ilj is odd. As the diwalk has finite weight

and therefore |P̊ 1
h,vlj
| − 2x(P̊ 1

h,vlj
) 6= +∞ the odd walks P 1

h,vlj
exist and can be used as

spokes. So we have associated a (nonsimple) odd wheel with a diwalk.
The forward direction is covered already by Theorem 7. Take the map φ from there

and set ij = φ(vj).
Application of Lemma 8(b) on the terms in parentheses in

2k+1∑
j=1

−2x̄h + |P̊ 1
lj | − 2x̄(P̊ 1

lj ) + |P̊ 1
lj+1
| − 2x̄(P̊ 1

lj+1
) + 2

lj+1−1∑
i=lj

(1− x̄i − x̄i+1)


yields immediately that the length of the diwalk and the weight of the wheel are equal.

Hence, to find a violated odd (even) wheel with hub h and initial spoke end v1 we
have to find a shortest odd (even) wheel with hub h and initial spoke end v1; if its weight
is less than 2(1 − x̄h) (or 2x̄h) then it is violated. Otherwise there is no violated odd
(even) wheel with hub h and initial spoke end v1. To reduce it to a shortest path problem
in Dh where arc-weights w1, w0 can be negative we have to ensure that Dh contains no
negative dicycle.

Lemma 10. Given some x̄ ∈ CSTAB(G) and a vertex h of G then Dh contains no
negative dicycle with respect to w1 and none with respect to w0.

Proof. Consider a dicycle (v1, i1) − · · · − (vp = v1, ip = i1) of Dh; first of all, its length
has to be even (as F is bipartite), that is, p is odd; so let k = (p − 1)/2. If all second
components belong to {1, 2} (or to {4, 5}), all involved edge weights are nonnegative,
since they have the form 2(1− x̄vi − x̄vi+1

) which is nonnegative as the edge inequalities
are fulfilled. If the second components do not all belong to either {1, 2} or {4, 5}, then
there is a vertex with second component from {0, 3}. Without loss of generality, we may
assume that i1 = 0 and can now as before determine a sequence l1 = 1 < l2 < · · · <
l2k+1 of indices of vertices on the walk that have second component 0 or 3; again, the
differences between consecutive lj are odd. The weights of the subdiwalks from (vlj , ilj )
to (vlj+1

, ilj+1
) are nonnegative by Lemma 8(c). Hence the claim follows for w1 and

analogously for w0.

The task to find a shortest subdivided wheel with hub h and initial spoke end v1 can
be solved by finding a shortest (v1, 0)  (v1, 3) diwalk encountering at least two more
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vertices with second component in {0, 3} in Dh with respect to weights w1 as defined
for Lemma 8 and comparing that length to 2 − 2x̄h. By Lemma 8(d), if the shortest
(v1, 0)  (v1, 3) diwalk in Dh has only two vertices with second component in {0, 3},
then its weight is at least 2− 2x̄h, thereby certifying that no violated wheel with hub h
and start v exists. This yields the next result.

Corollary 11. Given G and x̄ ∈ CSTAB(G) then there is a violated odd wheel-inequality
with hub h starting in v iff Dh contains a (v, 0) (v, 3) diwalk of length less than 2−2x̄h
with respect to w1. There is a violated even wheel-inequality with hub h starting in v iff
Dh contains a (v, 0) (v, 3) diwalk of length less than 2x̄h with respect to w0.

Finally we consider the complexity of the entire separation algorithm for a graph G
with n vertices and m edges. It is easy to see that for every hub h ∈ V first of all
we have to compute the odd P 1

lj
-walks and even P 0

lj
-walks having at least one arc each

as candidates for spokes with one call to Dijkstra in O(m + n log n) for G ·K2 and for
G · P3 (where P3 is the path on 3 vertices), respectively. By applying Johnson’s [1977]
all-pairs-shortest-path algorithm to Dh in time O(nm+n2 log n) we check whether there
is a (v, 0)  (v, 3) diwalk of length less than 2 − 2x̄h or less than 2x̄h, respectively. As
there are n hubs we achieve an overall running time of O(n2m+n3 log n). Thus we have
proved:

Theorem 12. The separation problems given x̄ ∈ CSTAB(G) for WASTAB(G) and
WBSTAB(G) can be solved in time O(n2m+ n3 log n).

This is an improvement over the O(n4)-bound for the algorithm by Cheng and Cun-
ningham [8, 9] for the separation problem if the involved graphs have m = O(nβ) for
some β < 2 (i.e. if their average degree is bounded by some constant or O(nε) for some
ε < 1). We found for the conflict graphs occurring during a branch-and-cut solution of the
ORLIB-problems of Beasley with odd-cycle- and clique-cuts, that m < 17n, hinting that
even β = 1 is plausible. Moreover, the case β = 2 is only of little interest for LP-based
approaches, as then the graph is almost complete, which provides stable-set-instances
that are amendable to more combinatorial approaches.

4. Speed-Ups for Practise

In practise, one often wants to separate only a promising subset of the spoke end-hub-
pairs and not over all combination. Suppose for some heuristic, we want to search for a
violated inequality for N hubs and a total of M spoke end-hub-pairs. For each hub, it is
necessary to compute a potential by using an O(mn) shortest path algorithm. Further,
each of the M spoke end-hub-pairs require a O(m+ n log n) application of the Dijkstra
algorithm. Taken together this requires O(M(m+ n log n) +N(mn)). Therefore for the
initial version of the algorithm, it is always faster to check several spoke end-hub-pairs for
the same hub than for different hubs. We will decompose the problem slightly different,
so that we achieve a time of O((M +N)(m+ n log n)) so that during the execution the
most promising spoke end-hub-pairs can be choosen without a substantial performance
degradation.

Given some digraph D = (V,A,w) with arbitrary (possibly negative) arcweights but
without negative cycles, a potential is a p ∈ QV that fulfills

wuv ≥ pv − pu ∀uv ∈ A.
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During Johnson’s algorithm, first a potential of the digraph is computed that is used to
define new nonnegative weights w′uv := wuv − pv + pu. It turns out, that shortest paths
with respect to w are shortest paths with respect to w′ and vice versa. However, due to
the special structure of our digraph Dh, it is possible to compute a potential not only in
O(mn) (Bellman-Ford) but already in O(m+ n log n) (Dijkstra).

The standard way would be to add an artificial vertex s to Dh to obtain digraph D′h
where arcs of length zero are going from s to any vertex of D′h. Now the shortest path
distances from s in D′h yield (when restricted to Dh) a potential. Given that negative
arcs but not negative cycles might be present, this can be solved by the Bellman-Ford
algorithm.

To avoid the O(mn) Bellman-Ford algorithm, the idea is to fix some distances taking
care of all negative arcs and then running a slight variation of Dijkstra’s algorithm.

Lemma 13. For given x̄ ∈ CSTAB(G), and h ∈ G the vertices (v, 0) and (v, 3) are at
distance 0 from s in D′h with respect to w1 (or w0).

Proof. Because of x̄ ∈ CSTAB(G) the graph D′h contains no negative cycles. Let (v, i)
be the vertex closest to s among all (w, 0), (w, 3) (and if there are multiple ones, then
one closest with respect of the number of edges is choosen). If the interior of the shortest
path from s to (v, i) would contain another vertex from (w, 0), (w, 3), we could choose
the last such vertex (u, j) on that path before (v, i) (hence j = i+ 3 mod 6) and let U
be the path from (u, j) to (v, i); by (c) of Lemma 8 we have w1(U) ≥ 0; hence (u, j)
would be fewer edges away from s than (v, i) and its distance would not be larger either,
contradicting the choice of (v, i). Hence, on the path from s to (v, i) are no vertices of
type (w, 0), (w, 3) and hence no negative edges, which ensures that the distance from s
to (v, i) is ≥ 0.

Now in the Dijkstra algorithm on D′h, we label all vertices (v, 0) and (v, 3) with 0
and make these labels final. For each arc ((v, 0/3), (u, 1/4)) we update the distance label
of (u, 1/4) if the arc permits to reduce its distance. It is pivotal to notice, that the arc
((v, 0/3), (u, 1/4)) can not bring another improvement afterward, since its source (v, 0/3)
got already a final distance label. After this update, the arcs ((v, 0/3), (u, 1/4)) can be
removed from D′h. The resulting network has no longer any negative arcs, hence Dijkstra’s
algorithm can finish the computation of the distance labels. So we have proved:

Lemma 14. Given x̄ ∈ CSTAB(G) and h ∈ G, a potential for Dh can be computed in
time O(m+ n log n).

This yields the promised result:

Theorem 15. The separation problem given x̄ ∈ CSTAB(G) for WASTAB(G) and
WBSTAB(G) can be solved in time by O(n2) applications of the fast Dijkstra algorithm
(each requiring O(m+ n log n)); of these, O(n) Dijkstra invocations are used to precom-
pute potentials and then O(n2) invocations are used to search violated wheels.

5. Conclusion

The categorical product of the original graph with a small gadget presented a new
way to keep track of the different parity requirements when separating general wheel
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inequalities. The advantage of our approach over the approach by Cheng and Cunning-
ham [8, 9], is that our approach preserves the sparsity of the graph, while their approach
involves an auxillary graph that is dense. So when facing problems on sparse graphs, the
approach via categorical graph product might beneficial.
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