A Newton-Picard Inexact SQP Method for Time-Periodic PDE Constrained Optimization

A. Potschka A. Küpper
H.G. Bock M. Diehl S. Engell
E. Kostina J.P. Schlöder

Interdisciplinary Center for Scientific Computing, University of Heidelberg
Department of Biochemical and Chemical Engineering, TU Dortmund
OPTEC, K.U. Leuven, Belgium Philipps-University Marburg

GAMM Workshop on PDE Constrained Optimization of Certain and Uncertain Processes
Trier, June 4, 2009
Outline

Application: Simulated Moving Bed Process (SMB)

Constrained Optimization Problem Formulation

Newton-Picard Inexact SQP

Theoretical Convergence and Complexity Analysis

Numerical Convergence Results
Simulated Moving Bed Processes (SMB)

- Goal: Separation of two chemical species in a solution
 - Distillation not possible
 - Eg. Glucose/fructose separation, enantiomere separation
- Used in: Soft drinks, pharmacy
- Preparative chromatography:
 Separation by different adsorption properties
- Simple batch form:

![Diagram of SMB process](image)

- Mixture
- Column
- Adsorbent fixed bed
- Separated Peaks
Simulated Moving Bed Principle I

- Control: Port flows, switching period
- Fixed controls: Process attains cyclic/periodic steady state
Simulated Moving Bed II

Advantages:

▶ Chemical: Better separation properties
▶ Economical: Continuous process
 ⇒ Continuous production

Goal:

▶ Optimize cyclic steady state (CSS)
SMB Model

- General Rate Model (1D) [Gu, 1990, 1995]
- System of diffusion-advection-adsorption equations
- Main difficulty: Highly nonlinear coupling via algebraic isotherm equations
- E.g. Bi-Langmuir isotherm equation

\[
q_i = \frac{H_i^1 c_{p,i}}{1 + \sum_{m=1}^{2} k_m^1 c_{p,m}} + \frac{H_i^2 c_{p,i}}{1 + \sum_{m=1}^{2} k_m^2 c_{p,m}}
\]
Constrained Optimization Problem

- Optimize cyclic steady state (CSS)

\[
\begin{align*}
\min_{y,u,T} & \quad f(y(T), u) \\
\text{s.t.} & \quad \partial_t y = L(y, u) \quad \text{in } [0, T] \times \Omega, \quad \text{plus BC on } \partial \Omega, \\
& \quad y(0) - Py(T) = 0, \\
& \quad h_1(y(T)) \geq 0, \quad \text{(range}(h_i) \subset \mathbb{R}^m), \\
& \quad h_2(u(t), T) \geq 0, \quad t \in [0, T]
\end{align*}
\]

- Main difficulty: Boundary value constraint on \(y \)
Discretize then Optimize

- Discretize states in space and controls in time
- Parametrize states in time by Shooting technique
 \[\Rightarrow \text{Large scale NLP} \]
- Solved by Inexact SQP
- Generation of forward and adjoint directional derivatives via Internal Numerical Differentiation/Automatic Differentiation
- \(q \): Discretized controls plus parameters and switch period
- \(s \): Discretized initial state
- \(\hat{s}(t; s, q) \): Parametrized state
Inexact SQP (a.k.a. adjoint-based SQP)

- SQP: Sequentially solve Quadratic Programs with approximated Hessians
- Inexact SQP: Also approximate constraint Jacobians
- Solve QP-KKT systems in each iteration:

\[
\begin{pmatrix}
H_{ss} & H_{sq} & A_s^T & B_s^T \\
H_{qs} & H_{qq} & A_q^T & B_q^T \\
A_s & A_q & 0 & 0 \\
B_s & B_q & 0 & 0
\end{pmatrix}
\begin{pmatrix}
\Delta s \\
\Delta q \\
-\Delta \lambda \\
-\Delta \mu_{\text{active}}
\end{pmatrix}
= -
\begin{pmatrix}
\nabla_s L \\
\nabla_q L \\
s - P\hat{s}(T; s, q) \\
h_{\text{active}}(s, q)
\end{pmatrix}
\]

- Calculation of ∇L by adjoint solve
- Quasi Newton Hessian approximation H (BFGS)
- Newton-Picard projective approximation for A_s
 (data-sparse)
Elimination of states from QP

- Use data-sparse A_s to directly eliminate Δs and periodicity constraint from QP: $\Delta s = C\Delta q + r$

- Solve small QP with standard active set QP solver
- Recover Δs
- Recover $\Delta \lambda$ by KKT transformation rules (requires one additional adjoint solve)
Consider discretized periodicity constraint for s with fixed q:

$$s - P\hat{s}(T; s, q) = 0$$

Use Newton-type method:

$$A^k_s \Delta s^k = - (s^k - P\hat{s}(T; s^k, q)) , \quad s^{k+1} = s^k + \Delta s^k$$

Full Newton: $A^k_s = \mathbb{I} - M^k$, where

$$M^k = P \frac{d\hat{s}}{ds}(T; s^k, q)$$

is the so called monodromy matrix
Typical Spectrum of the SMB M

- Cluster of EV around 0
- Few large EV
- Idea: Calculate M only for “slow” EV
- Picard for fast EV
- Philosophy: High-dimensional discretization but low-dimensional dynamics
Newton-Picard [Lust et al. 1998]

- Use expensive Newton method on “slow” modes
- Use inexpensive functional (Picard) iteration on “fast” modes
- Let orthonormal $V_p \in \mathbb{R}^{ns \times p}$ span the “slow” invariant subspace, i.e. the p-dimensional dominant subspace of M
- Approximation of $\mathbb{I} - M$:

$$A_s = \mathbb{I} - MV_pV_p^T,$$

- For A_s and A_s^{-1}, only the action MV_p is needed
- Can be evaluated by p directional forward derivatives of DE
- Algorithmically, V_p is only approximated with a piggy-back Subspace Iteration simultaneously with the Newton-type method
- Picard contraction can be improved by introduction of a shift [Potschka et al. 2008]
Local Convergence I

- By increasing p, A_s can be ameliorated
- Algorithmically, an estimate for the inexactness is available from the Subspace Iteration for V_p

$$\sigma_r(A_s - (I - M)) < \lambda_p$$
Local Convergence II [Wirsching et al., 2006]

Assumptions:

- \(w^* = (s^*, q^*, \lambda^*, \mu^*) \) KKT-point
- LICQ and strict complementarity holds in \(w^* \)
- \(H_k \) positive definite, bounded
- Exact KKT matrix \(\hat{K}(w_k) \), approximate \(K_k \)
- \(K_k^{-1} \) uniformly bounded for all \(k \)
- There exists \(\kappa < 1 \) such that
 \[
 \left\| K_{k+1}^{-1} \left(K_k - \hat{K}(w_k + \alpha \Delta w_k) \right) \Delta w_k \right\| \leq \kappa \left\| \Delta w_k \right\| , \quad \forall \alpha \in [0, 1]
 \]

- Full steps

Then:

- Stationary active set and q-linear convergence in a neighborhood of \(w^* \) with convergence rate \(\kappa \)
Complexity Analysis

<table>
<thead>
<tr>
<th>Per Iteration</th>
<th>Newton-Picard iSQP</th>
<th>SQP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward solves</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Forward dir. der.</td>
<td>$n_u \frac{3M+1}{2} + S \cdot p + 1$</td>
<td>$n_u \frac{M+1}{2} + n_s$</td>
</tr>
<tr>
<td>Adjoint solves</td>
<td>$3 \ (2)$</td>
<td>0</td>
</tr>
</tbody>
</table>

- M control intervals (typically ≤ 20)
- p dimension of subspace (typically 1–20)
- S subspace iterations (typically 1–5)
- Effort for linear algebra negligible
- Number of solves per Newton-Picard iSQP iteration independent of n_s
Numerical Convergence of Newton-Picard iSQP

Andreas Potschka

Newton-Picard iSQP for time-periodic PDE Opt

- 17
Summary

- Newton-Picard Inexact SQP Method: Simultaneous approach for solution of time-periodic PDE optimization problems
- Exploitation of low-dimensional dynamics of a high-dimensional discretization
- Used to solve SMB application