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Abstract

We investigate the behaviour of families of meromorphic functions in
the neighborhood of points of non-normality and prove certain covering
properties that complement Montel’s Theorem. In particular, we also
obtain characterizations of non-normality in terms of such properties.
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1 Introduction

For an open set Ω ⊂ C we denote by M(Ω) the set of meromorphic functions on
Ω, by which we mean all functions whose restriction to a connected component
of Ω is either meromorphic or constant infinity. Endowed with the topology of
spherically uniform convergence (i.e. uniform convergence with respect to the
chordal metric χ) on compact subsets of Ω, the space M(Ω) becomes a complete
metric space (e.g. [12, Chap. VII]). As usual, we say that a family F ⊂ M(Ω)
is normal at a point z0 ∈ Ω, if every sequence (fn) ⊂ F contains a subsequence
(fnk) that converges spherically uniformly on compact subsets of some open
neighborhood U of z0 to a function f ∈ M(U). By J(F) we denote the set of
points in Ω, at which the family F is non-normal. If z0 ∈ J(F), the family F

can still have infinite subfamilies F̃ ⊂ F that are normal at z0, in other words,
z0 ∈ J(F) does in general not imply z0 ∈ J(F̃). We say that F is strongly
non-normal at a point z0 ∈ Ω, if we have z0 ∈ J(F̃) for every infinite subfamily
F̃ ⊂ F. We further say that F is strongly non-normal on a relatively closed set
B ⊂ Ω, if F is strongly non-normal at every z0 ∈ B, that is if B ⊂ J(F̃) for
every infinite subfamily F̃ ⊂ F. Moreover, we call F hereditarily non-normal on
B, if some infinite subfamily F̃ ⊂ F is strongly non-normal on B. Note that
on a single point set, hereditary non-normality is equivalent to non-normality,
while this is in general not true for sets containing at least two points.

For a family F ⊂ M(Ω) and an open set U ⊂ Ω, we write lim supF(U) for
the intersection of all

⋃
f∈F̃ f(U), where F̃ ranges over the cofinite subsets of F.

Moreover, for z0 ∈ Ω we denote by lim supz0 F the intersection of lim supF(U)
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taken over all neighborhoods U ⊂ Ω of z0. Similarly, we write lim inf F(U)
for the union of all

⋂
f∈F̃ f(U), where F̃ ranges over the cofinite subsets of F

and lim infz0 F for the intersection of lim inf F(U) taken over all neighborhoods
U ⊂ Ω of z0. Obviously, we have that lim infz0 F ⊂ lim supz0 F, furthermore

lim infz0 F =
⋂

F̃⊂F infinite lim supz0 F̃.
The classical Montel Theorem suggests that the behaviour of families F ⊂

M(Ω) in neighborhoods of points z0 ∈ J(F) consists in some sense in spread-
ing points, since it asserts that for every z0 ∈ J(F), the set Ez0(F) := C∞ \
lim supz0 F contains at most two points. Hence, for every neighborhood U of
z0, every point a ∈ C∞ is covered by f(U) for infinitely many f ∈ F, with
at most two exceptions. In case that Ez0(F) contains two points and F is
strongly non-normal at z0, a further consequence of Montel’s Theorem is that
lim infz0 F = lim supz0 F, so that for every neighborhood U of z0, every point
a ∈ C∞ \ Ez0(F) is covered by f(U) for cofinitely many f ∈ F. Note, however,
that Montel’s Theorem does not contain any information about the ‘size’ of the
individual sets f(U), for instance, if U is any neighborhood of a point z0 ∈ J(F),
it is in general not clear if for a given set A ⊂ lim supz0 F we have A ⊂ f(U) for
infinitely many f ∈ F.

In this note, we will further investigate the behaviour of (strongly) non-
normal families near points of non-normality and show certain covering and
‘expanding’ properties that complement that statement of Montel’s Theorem.
In particular, we will also derive different characterizations of (strong) non-
normality in terms of these properties.

2 Non-normality and topological transitivity

We say that a family F ⊂ M(Ω) is (topologically) transitive with respect to a
point z0 ∈ Ω, if for every pair of non-empty open sets U ⊂ Ω and V ⊂ C∞
with z0 ∈ U , there exists f ∈ F such that f(U) ∩ V 6= ∅. Note that in this
case we have f(U) ∩ V 6= ∅ for infinitely many f ∈ F. If f(U) ∩ V 6= ∅ holds
for cofinitely many f ∈ F, we say that F is (topologically) mixing with respect
to z0. Furthermore, if for every non-empty open set U ⊂ Ω with z0 ∈ U and
every pair of non-empty open sets V1, V2 ⊂ C∞, there exists f ∈ F such that
f(U) ∩ Vi 6= ∅ for i = 1, 2, we say that F is weakly mixing with respect to
z0. Finally, we say that F is transitive (or (weakly) mixing) with respect to a
relatively closed set B ⊂ Ω, if F is transitive (or (weakly) mixing) with respect
to every z0 ∈ B.

With these notations, we obtain the following characterization of (strong)
non-normality.

Theorem 1. Let Ω ⊂ C be open, F ⊂M(Ω) a family of meromorphic functions
and z0 ∈ Ω. Then we have:

(a) F is strongly non-normal at z0 if and only if F is mixing with respect to
z0.
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(b) The following are equivalent:

(i) F is non-normal at z0.

(ii) There exists an infinite subfamily F̃ ⊂ F that is mixing with respect
to z0.

(iii) F is weakly mixing with respect to z0.

Proof. (a): Let F be strongly non-normal at z0 and suppose that F is not
mixing with respect to z0. Then there exist non-empty open sets U ⊂ Ω and
V ⊂ C∞ with z0 ∈ U , and an infinite subfamily F̃ ⊂ F such that f(U) ∩ V = ∅
for every f ∈ F̃. By Montel’s Theorem, we obtain that F̃ is normal on U , hence
also at z0, in contradiction to the strong non-normality of F at z0.

On the other hand, suppose that F is mixing with respect to z0 ∈ Ω,
but not strongly non-normal at z0. Then there exists an open neighborhood
U of z0 and a sequence (fn) ⊂ F, such that (fn) converges spherically uni-
formly on compact subsets of U to a function f ∈ M(U). For λ > 0 we set
Dλ(z0) := {z ∈ C : |z − z0| < λ} and Dχ

λ(w0) := {w ∈ C∞ : χ(w,w0) < λ},
where z0 ∈ C and w0 ∈ C∞, and denote by D̄λ(z0) the closure of Dλ(z0) in C.
Then, for ε > 0 sufficiently small, we have that D̄ε(z0) ⊂ U and there exists
δ > 0 and w0 ∈ C∞ such that Dχ

δ (w0) ⊂ C∞ \ f(D̄ε(z0)). Since (fn) is mixing
with respect to z0, we obtain that fn(Dε(z0))∩Dχ

δ
2

(w0) 6= ∅ for all n sufficiently

large, in contradiction to the spherically uniform convergence of (fn) to f on
D̄ε(z0).

(b): (i)⇒ (ii) : Since F is non-normal at z0, there exists an infinite subfamily
F̃ ⊂ F that is strongly non-normal at z0. This subfamily is mixing with respect
to z0 according to the first statement of the Theorem.
(ii)⇒ (iii): This is clear, since a mixing family is also weakly mixing.
(iii)⇒ (i): Suppose that F is weakly mixing with respect to z0. Further consider
two non-empty open sets V1, V2 ⊂ C∞ such that infz∈V1,w∈V2

χ(z, w) > ε for
some ε > 0. For k ∈ N, we set Uk := {z ∈ C : |z − z0| < 1

k}∩Ω. By assumption,
for every k ∈ N there is a function fk ∈ F such that fk(Uk) ∩ V1 6= ∅ and

fk(Uk) ∩ V2 6= ∅, and hence points z
(1)
k , z

(2)
k ∈ Uk such that fk(z

(1)
k ) ∈ V1 and

fk(z
(2)
k ) ∈ V2. Note that z

(1)
k , z

(2)
k ∈ Uk implies that z

(1)
k → z0 and z

(2)
k → z0 for

k →∞, furthermore we have that χ(fk(z
(1)
k ), fk(z

(2)
k )) > ε for every k ∈ N, and

hence
χ(fk(z0), fk(z

(1)
k )) >

ε

2
or χ(fk(z0), fk(z

(2)
k )) >

ε

2
.

Hence, we can find a sequence (zk) with zk → z0 for k →∞ and χ(fk(z0), fk(zk)) >
ε
2 for every k ∈ N, implying that the family F is not spherically equicontinuous
at z0, and thus also not normal.

By Montel’s Theorem, it is clear that z0 ∈ J(F) implies that F is transitive
with respect to z0. On the other hand, it is easily seen that transitivity of a
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family with respect to some point z0 ∈ Ω is in general not sufficient for non-
normality at z0. For instance, if (zn) is a sequence that is dense in C∞, the
family (fn) of constant functions fn ≡ zn is transitive with respect to any
z0 ∈ Ω, while at the same time we have J(fn) = ∅. However, the following
proposition shows that this example is in some sense typical:

Proposition 1. Let Ω ⊂ C be open, F ⊂ M(Ω) a family of meromorphic
functions and z0 ∈ Ω. Suppose that F is transitive with respect to z0 and that
z0 /∈ J(F). Then ∪f∈Ff(z0) is dense in C∞.

Proof. Suppose that ∪f∈Ff(z0) is not dense in C∞. Then there is w ∈ C∞ and
ε > 0, such that ∪f∈Ff(z0)∩Dχ

ε (w) = ∅, where Dχ
ε (w) := {z ∈ C∞ : χ(z, w) <

ε}. Consider now for k ∈ N the sets Uk := {z ∈ C : |z − z0| < 1
k} ∩ Ω. Since

F is transitive with respect to z0, for every k ∈ N there is fk ∈ F such that
fk(Uk) ∩Dχ

ε
2
(w) 6= ∅. In particular, there is a sequence (zk) with zk ∈ Uk, and

hence zk → z0 for k → ∞, such that fk(zk) ∈ Dχ
ε
2
(w) for k ∈ N. On the other

hand, we have fk(z0) /∈ Dχ
ε (w) for k ∈ N. Finally, we obtain that

χ(fk(z0), fk(zk)) >
ε

2
for every k ∈ N,

so that F is not spherically equicontinuous at z0, and thus also not normal, that
is z0 ∈ J(F).

Example 1.

(i) Let f be a transcendental entire function, and let F := {f◦n : n ∈ N} be
the family of iterates of f . Then F is strongly non-normal on the Julia
set J = J(F) (e.g. [14]), as follows e.g. from the facts that the repelling
periodic points are dense in J and that J is the boundary of the escaping
set (e.g. [29]). Here we have lim infz0 F ⊃ C \E for each z0 ∈ J , where E
is the (empty or one-point) set of Fatou exceptional values of f , that is the
set of points w ∈ C whose backward orbit O−(w) :=

⋃
n≥1{z : f◦n(z) = w}

is finite.
Indeed, consider z0 ∈ J(F) and an infinite subfamiliy F̃ = {f◦nk : k ∈ N}.
It follows from Picard’s Theorem that if a ∈ C is not Fatou exceptional,
there are points a1, a2 ∈ C with a1 6= a2 and f◦2(a1) = a = f◦2(a2).
Since F is strongly non-normal at z0, Montel’s Theorem implies that the
set C \ lim supz0 F̃

− contains at most one point, where F̃− := {f◦(nk−2) :

k ∈ N}. Hence, {a1, a2}∩ lim supz0 F̃
− 6= ∅, which implies a ∈ lim supz0 F̃.

(ii) Let M denote the Mandelbrot set and let, with p0 := idC, the family (pn)
of polynomials of degree 2n be recursively defined by pn := p2

n−1 + idC.
Since pn → ∞ pointwise on C \M for n → ∞ and |pn| ≤ 2 on M (e.g.
[6]), we have ∂M ⊂ J(F), where F := {pn : n ∈ N0}, and no infinite
subfamily of F can be normal at any point of ∂M . Hence, F is strongly
non-normal and thus mixing on ∂M .

4



(iii) A function f ∈M(C) is called Yosida function, if it has bounded spherical
derivative f# (e.g. [31, 24]). Hence, if f is not a Yosida function, there
exists a sequence (zn) in C with zn → ∞ and f#(zn) → ∞ for n →
∞. Marty’s Theorem (e.g. [28, p.75]) implies that the family (fn) with
fn(z) := f(z + zn) is strongly non-normal at 0, hence by Theorem 1, we
obtain that (fn) is mixing with respect to 0. Note that it is easily seen
that if f ∈M(C) is a Yosida function, then its order of growth is at most
2, while entire Yosida functions are necessarily of exponential type (e.g.
[11, 24]).

For a family of meromorphic functions F ⊂ M(Ω) and N ∈ N, we con-
sider the family F×N := {f×N : f ∈ F}, where f×N : ΩN → CN∞ with
f×N (z1, . . . , zN ) = (f(z1), . . . , f(zN )). We say that F×N is transitive with re-
spect to z ∈ ΩN , if for every pair of non-empty open sets U ⊂ ΩN and V ⊂ CN∞
with z ∈ U , there exists f×N ∈ F×N such that f×N (U) ∩ V 6= ∅. Furthermore,
for a relatively closed set B ⊂ Ω, we say that F×N is transitive with respect
to BN , if F×N is transitive with respect to every z ∈ BN . We then have the
following characterization of hereditary non-normality.

Proposition 2. Let Ω ⊂ C be open, F ⊂ M(Ω) a family of meromorphic
functions and B ⊂ Ω closed in Ω. Then the following are equivalent:

(i) F is hereditarily non-normal on B.

(ii) There exists an infinite subfamily F̃ ⊂ F that is mixing with respect to B.

(iii) For all N ∈ N the family F×N is transitive with respect to BN .

Proof. The equivalence of (i) and (ii) follows from Theorem 1.
(ii) ⇒ (iii): Without loss of generality consider F̃ to be countable, F̃ =

{fn : n ∈ N} say. Let N ∈ N and consider non-empty open sets U ⊂ ΩN and
V ⊂ CN∞ with BN ∩ U 6= ∅. Then there exist non-empty open sets U1, . . . , UN
with U1 × · · · × UN ⊂ U and B ∩ Ui 6= ∅ for i = 1, . . . , N , and non-empty open
sets V1, . . . , VN ⊂ C∞ with V1 × · · · × VN ⊂ V . According to the assumption,
{fn : n > m} is transitive with respect to B, for all m ∈ N. Inductively, we
can find a strictly increasing sequence (nk) in N with fnk(U1) ∩ V1 6= ∅ for all
k ∈ N. By assumption, the family {fnk : k ∈ N} is transitive with respect to
B. Thus, the same argument as above yields the existence of a subsequence

(n
(2)
k ) of (n

(1)
k ) := (nk) with f

n
(2)
k

(U2) ∩ V2 6= ∅ for all k ∈ N. Proceeding in

the same way, for any 2 ≤ j ≤ N we find subsequences (n
(j)
k ) of (n

(j−1)
k ) with

f
n
(j)
k

(Uj) ∩ Vj 6= ∅ for all k ∈ N. In particular, for n := n
(N)
1 , we obtain that

(fn(U1)× · · · × fn(UN )) ∩ (V1 × · · · × VN ) 6= ∅,

hence also f×Nn (U) ∩ V 6= ∅, implying that F×N is transitive with respect to
BN .

(iii) ⇒ (ii): The proof follows along the same lines as the proof of the
corresponding part of the Bès-Peris Theorem (e.g. [21, pp. 76]).
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Remark 1.

(i) Let K(A) denote the hyperspace of A ⊂ C, that is, the space of all non-
empty compact subsets of A endowed with the Hausdorff metric, and sup-
pose that B as in Proposition 2 has non-empty interior. Then [2, Cor.
1.2] shows that, under the conditions of Proposition 2, for each C-closed
set A ⊂ B which coincides with the closure of its interior, the family F|E
is dense in C(E,C∞) for generically many sets E ∈ K(A).

(ii) We mention that Proposition 2 is an extension of Theorem 3.7 from the
recent paper [4].

Example 2.

(i) Consider a function f(z) =
∑∞
ν=0 aνz

ν that is holomorphic on the unit
disk D. Suppose that f has at least one singularity on ∂D and denote
by D ⊂ ∂D the set of all singularities. Then, denoting by sn(z) :=
(snf)(z) :=

∑n
ν=0 aνz

ν the nth partial sum of f , the family (sn) is non-
normal on ∂D and strongly non-normal on D. Moreover, in case D 6= ∂D,
Vitali’s Theorem implies that a subsequence of (sn) forms a normal family
at a point z0 ∈ ∂D \D if and only if it converges to an analytic continua-
tion of f in some neighborhood of z0. From refined versions of Ostrowski’s
results on overconvergence ([16, Thms. 3 and 4]), it follows that a subse-
quence (snk) is strongly non-normal at z0 ∈ ∂D \D if and only if (sn) has
no Hadamard-Ostrowski gaps relative to (nk), that is, if and only if there
is a sequence (δk) of positive numbers tending to 0 with

sup
(1−δk)nk≤ν≤nk

|aν |1/ν → 1

as k →∞. In this case, the sequence (snk) is already strongly non-normal
at all z ∈ ∂D. Since the non-normality of (sn) on ∂D implies that, given
z0 ∈ ∂D \ D, some subsequence of (sn) is strongly non-normal at z0, we
finally obtain that the family (sn) is always hereditarily non-normal on
∂D.
According to a result of Gardiner ([15, Cor. 3]), for each f that is ana-
lytically continuable to some domain U such that C \ U is thin at some
z0 ∈ ∂D but not continuable to the point z0, the sequence (sn) has no
Hadamard-Ostrowski gaps with respect to any (nk), hence (sn) is strongly
non-normal on ∂D. In particular, this holds for each f that has an isolated
singularity at some point z0 ∈ ∂D.

(ii) We write H0 for the space of functions holomorphic on C\{1} that vanish
at ∞. For f(z) = 1/(1 − z), the sequence (snf) is the geometric series
which tends to ∞ spherically uniformly on compact subsets of C\D. From
[3, Thm. 1.1] it can be deduced that generically many functions f ∈ H0

enjoy the property that some subsequence of the sequence ((f−snf)(z)/zn)
converges to 1/(1−z) spherically uniformly on compact subsets of C∞\{1}.
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This implies that the corresponding subsequence of (snf) converges to ∞
spherically uniformly on compact subsets of C\D and thus forms a normal
family on C \ D. In particular, (snf) is not strongly non-normal at any
point z0 ∈ C \ D.
On the other hand, if A is a countable and dense subset of C \ D, from
[23, Thm. 2] it follows that for generically many functions f ∈ H0 a
subsequence (snkf) of (snf) converges to 0 pointwise on A. Since a result
from [22] implies that for f ∈ H0, normality of a subsequence of (snf)
at a point z0 ∈ C \ D forces the subsequence to tend to ∞ spherically
uniformly on compact subsets of some neighborhood of z0, it follows that
no subsequence of (snkf) can form a normal family at any point of C \D.
By the previous example, (snf) is strongly non-normal on ∂D for f ∈ H0,
thus we obtain that for generically many f ∈ H0, the family (snf) is
hereditarily non-normal on C \ D. By Remark 1, for generically many
f ∈ H0, the sequence (snf |E) is dense in C(E,C∞) for generically many
E ∈ K(C \ D) (see also [1, Thm. 2]).

3 Non-normality and expanding families

We define the following ‘expanding’ property of families F ⊂M(Ω).

Definition 1. Let Ω ⊂ C be open, F ⊂M(Ω) a family of meromorphic functions
and z0 ∈ Ω. Consider further a set A ⊂ C∞. We say that F is expanding at z0

with respect to A, if for every open neighborhood U of z0 and every compact set
K ⊂ A we have K ⊂ f(U) for infinitely many f ∈ F. If K ⊂ f(U) holds for
cofinitely many f ∈ F, we say that F is strongly expanding at z0 with respect to
A. Finally, we say that F is (strongly) expanding on a set B ⊂ Ω with respect
to A, if F is (strongly) expanding with respect to A at every z0 ∈ B.

Note that if F is expanding at z0 with respect to A, there exists an infinite
subfamily F̃ ⊂ F which is strongly expanding at z0 with respect to A. Moreover,
in this case we have that A is contained in lim supz0 F. Also note that F is
strongly expanding at z0 with respect to A if and only if every infinite subfamily
F̃ ⊂ F is expanding at z0 with respect to A, and in this case A is contained in
lim infz0 F. On the other hand, we remark that A ⊂ lim infz0 F does in general
not imply that F is (strongly) expanding at z0 with respect to A. This can for
instance be seen by considering the family F := {enz + (1 − 1

n ) : n ∈ N}, for
which we have lim inf0 F = C, but F is not expanding at 0 with respect to any
set A ⊂ C with 1 ∈ A◦.

Our next result establishes a relationship between strong non-normality and
the expanding property. Here and in the following, we denote by |E| ∈ N0∪{∞}
the number of elements of a set E ⊂ C∞.

Theorem 2. Let Ω ⊂ C be open, F ⊂M(Ω) a family of meromorphic functions
and z0 ∈ Ω. Then we have:
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(i) If F is strongly non-normal at z0, then for each infinite subfamily F̃ ⊂ F

there exists E ⊂ C∞ with |E| ≤ 2, such that F̃ is expanding at z0 with
respect to C∞ \E. Moreover, F is strongly expanding at z0 with respect to
C∞ \ E, where E :=

⋃
F̃⊂F infiniteEF̃ with EF̃ ⊂ C∞ being some set such

that F̃ is expanding at z0 with respect to C∞ \ EF̃.

(ii) If | lim infz0 F| ≥ 2, then F is strongly non-normal at z0. In particular,
this holds if F is strongly expanding at z0 with respect to some A ⊂ C∞
with |A| ≥ 2.

Proof. (i): Suppose that F is strongly non-normal at z0 and consider an infinite
subfamily F̃ ⊂ F. Then F̃ is strongly non-normal at z0 and assuming that F̃ is
not expanding at z0 with respect to C∞ \ E for any E ⊂ C∞ with |E| ≤ 2, we
obtain that for every E ⊂ C∞ with |E| ≤ 2 there is an open neighborhood U of
z0 and a compact set K ⊂ C∞ \E, such that K \ f(U) 6= ∅ for cofinitely many
f ∈ F̃. In particular, if F̃ is not expanding at z0 with respect to C∞, we can
find an open neighborhood U1 of z0, a sequence (fn) in F̃, and a sequence (an)
in C∞ with an → a ∈ C∞ for n → ∞, such that an /∈ fn(U1) for every n ∈ N.
By assumption, F̃ is not expanding at z0 with respect to C∞ \ {a}, hence, there
is an open neighborhood U2 of z0 and a compact set K2 ⊂ C∞ \ {a}, such that
K2 \ f(U2) 6= ∅ for cofinitely many f ∈ F̃. In particular, there is a subsequence
(fnk) in F̃, and a sequence (bk) in K2 with bk → b ∈ K2 for k → ∞, such that
bk /∈ fnk(U2) for every k ∈ N. Since F̃ is not expanding at z0 with respect to
C∞ \ {a, b}, a similar argumentation leads to an open neighborhood U3 of z0, a
compact set K3 ⊂ C∞ \ {a, b}, a subsequence (fnkl ) in F̃ and a sequence (cl) in
K3 with cl → c ∈ K3 for l→∞, such that cl /∈ fnkl (U3) for every l ∈ N.
Finally, setting U = U1 ∩ U2 ∩ U3 we obtain that

{ankl , bkl , cl} ∩ fnkl (U) = ∅ for every l ∈ N.

Furthermore, since a, b, c are pairwise distinct, there exists ε > 0 such that

χ(ankl , bkl)χ(bkl , cl)χ(ankl , cl) > ε,

for l ∈ N sufficiently large, so that Carathéodory’s extension of Montel’s Theo-
rem (e.g. [28, p.104]) implies that (fnkl ) ⊂ F̃ is normal on U , hence also at z0,

in contradiction to the strong non-normality of F̃ at z0.
To prove the second statement, suppose that F is not strongly expanding

at z0 with respect to C∞ \ E. Then there is an infinite subfamily F̃ ⊂ F that
is not expanding at z0 with respect to C∞ \ E, contradicting the fact that F̃

is expanding at z0 with respect to C∞ \EF̃ for some set EF̃ ⊂ C∞ with EF̃ ⊂ E.

(ii): Suppose that for some infinite subfamily F̃ = {fn : n ∈ N} of F the
sequence (fn) is spherically uniformly convergent on compact subsets of a neigh-
borhood of z0. Then lim supz0 F̃ is a one-point set, and hence | lim infz0 F| ≤ 1.
The second statement follows from the fact that in this case we have A ⊂
lim infz0 F.
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Remark 2. Note that if F is strongly non-normal at z0, F does not need to be
strongly expanding at z0 with respect to any open set A ⊂ C∞. Indeed, let (qn)
be an enumeration of the Gaussian rational numbers with q2

n/n→ 0 as n→∞
and consider the family (fn) with fn(z) := enz + qn for z ∈ C. From Marty’s
Theorem, it is easily seen that (fn) is strongly non-normal on the imaginary axis
iR, but for a point z0 ∈ iR and an open neighborhood U of z0, we do not have
K ⊂ fn(U) for n sufficiently large for any compact set K ⊂ C with K◦ 6= ∅.

From Theorem 2 we easily obtain the following characterization of non-
normality in terms of the expanding property, which in some sense complements
the statement of Montel’s Theorem:

Corollary 1. Let Ω ⊂ C be open, F ⊂M(Ω) a family of meromorphic functions
and z0 ∈ Ω. Then the following are equivalent:

(i) There exists A ⊂ C∞ with |A| ≥ 2 such that F is expanding at z0 with
respect to A.

(ii) F is non-normal at z0.

(iii) There exists E ⊂ C∞ with |E| ≤ 2 such that F is expanding at z0 with
respect to C∞ \ E.

Proof. (i) ⇒ (ii): Suppose that F is expanding at z0 with respect to some
A ⊂ C∞ with |A| ≥ 2. Then there exists an infinity subfamily F̃ ⊂ F that is
strongly expanding at z0 with respect to A. By Theorem 2, the family F̃ is
strongly non-normal at z0, hence F is non-normal at z0.
(ii) ⇒ (iii): If F is non-normal at z0, there exists an infinite subfamily F̃ ⊂ F

that is strongly non-normal at z0. By Theorem 2, there then exists E ⊂ C∞
with |E| ≤ 2 such that F̃ is expanding at z0 with respect to C∞ \E. The same
then holds for the family F.
(iii)⇒ (i) is obvious.

Let F ⊂ M(Ω) be a family that is non-normal at a point z0 ∈ Ω and
consider the set Ez0(F) = C∞ \ lim supz0 F. If F is expanding at z0 with respect
to C∞ \ E for some set E ⊂ C∞, we obviously have Ez0(F) ⊂ E. If F is a
family of holomorphic functions on Ω that is (strongly) non-normal at z0, we
have ∞ ∈ Ez0(F), so that in this case we obtain that the expanding property
of F at z0 in Theorem 2 and Corollary 1 holds with respect to C \ E for some
set E ⊂ C with |E| ≤ 1.

Example 3.

(i) Consider a compact set K ⊂ C with connected complement and let f be a
function that is continuous on K and holomorphic in K◦. Further assume
that f has at least one singularity on ∂K and denote by D ⊂ ∂K the
set of all singularities. Let (pn) be a sequence of polynomials converging
uniformly on K to f (such a sequence exists by Mergelian’s Theorem).
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Then, (pn) is strongly non-normal on D, hence also expanding at every
point z0 ∈ D with respect to C \ E for some set E ⊂ C with |E| ≤ 1.
Indeed, since otherwise there exists a point z0 ∈ D, an open neighborhood
U of z0, and a subsequence (pnk) of (pn) that converges uniformly on
compact subsets of U to a function holomorphic in U , contradicting that
f does not have an analytic continuation across z0 ∈ D.

(ii) Consider the function f(z) = |z| on the interval [−1, 1] and denote by (p?n)
the sequence of polynomials of best uniform approximation to f on [−1, 1].
Then, according to the previous example, (p?n) is strongly non-normal at
the point 0. However, since p?n(z)→∞ for n→∞ spherically uniformly
on compact subsets of C \ [−1, 1] (e.g. [27]), the family (p?n) is strongly
non-normal on [−1, 1], hence expanding at every point z0 ∈ [−1, 1] with
respect to C \ E for some set E ⊂ C with |E| ≤ 1. (Note that the strong
non-normality on [−1, 1] also holds for several specific ray sequences of
best uniform rational approximants to f on [−1, 1] ([27, Cor. 1.3]).) In
fact, [5, Cor. 2] implies that (p?n) is expanding on [−1, 1] with respect to
C, as it shows the existence of a subsequence (p?nk) of (p?n) that is strongly
expanding on [−1, 1] with respect to C.

(iii) Consider again a function f(z) =
∑∞
ν=0 aνz

ν that is holomorphic on D
and has at least one singularity on ∂D. Then the family of partial sums
(sn) is non-normal on ∂D, hence, (sn) is expanding at every z0 ∈ ∂D
with respect to C \ E for some set E ⊂ C with |E| ≤ 1. In fact, (sn)
is expanding on ∂D with respect to C, as results in [13, 5] show that if

(ank) is a sequence such that limk→∞ |ank |
1
nk = 1, the subfamily (snk) is

strongly expanding on ∂D with respect to C.

A further consequence of Theorem 2 and the fact that we have Ez0(F) ⊂ E
if F ⊂ M(Ω) is expanding at z0 ∈ Ω with respect to C∞ \ E is the following
statement for the case |Ez0(F)| = 2.

Corollary 2. Let Ω ⊂ C be open and F ⊂ M(Ω) be a family of meromorphic
functions. Consider z0 ∈ Ω and suppose that F is (strongly) non-normal at z0

and that |Ez0(F)| = 2. Then F is (strongly) expanding at z0 with respect to
C∞ \ Ez0(F).

Proof. Suppose that F is non-normal at z0. By Corollary 1, there then exists
E ⊂ C∞ with |E| ≤ 2 such that F is expanding at z0 with respect to C∞ \ E.
Since Ez0(F) ⊂ E, we obtain Ez0(F) = E. If F is strongly non-normal at z0,
every infinite subfamily F̃ ⊂ F is non-normal at z0 with Ez0(F̃) = Ez0(F), hence
expanding at z0 with respect to C∞ \ Ez0(F).

Example 4.

(i) Consider again the family F := {enz + (1− 1
n ) : n ∈ N}, which is strongly

non-normal at the point 0. It is easily seen that F is strongly expanding at 0
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with respect to C∞\{1,∞}, but since E0(F) = {∞}, this can not be derived
from Corollary 2. On the other hand, the family F := {enz +(1− 1

n! ) : n ∈
N} is strongly non-normal at the point 0 with E0(F) = {1,∞}, so that in
this case Corollary 2 can be applied.

(ii) Consider again a power series f(z) =
∑∞
ν=0 aνz

ν with radius of conver-
gence 1 and denote by (sn) its partial sums. As mentioned in Example 3,
the family F = {sn : n ∈ N} is expanding on ∂D with respect to C, so that
for every z0 ∈ ∂D we have Ez0(F) = {∞} (note that this is also easily
derived from the classical Jentzsch Theorem ([19]) stating that for every
a ∈ C, every z0 ∈ ∂D is a limit point of a-points of the partial sums). How-
ever, a further result of Jentzsch ([20]) states that there exist power series
with radius of convergence 1, such that the zeros of some subsequence (snk)
of the partial sums do not have a finite limit point. Hence, in this case
Corollary 2 shows that the family F̃ = {snk : k ∈ N} is strongly expanding
with respect to C \ {0} at every point z0 ∈ ∂D at which the function does
not admit an analytic continuation (there must be at least one such point),
since F̃ is strongly non-normal at such z0 with Ez0(F̃) = {0,∞}.
In a similar vein, it was shown in [18, Thm. 1] that there exists a func-
tion f holomorphic on D and continuous on D with at least one singular-
ity on ∂D, for which the zeros of some subsequence (p?nk) of the sequence
(p?n) of polynomials of best uniform approximation do not have a finite
limit point. Hence, as before, Corollary 2 can be applied to the family
F = {p?nk : k ∈ N} at every singular point z0 ∈ ∂D of f , since F is
strongly non-normal at z0 (see Example 3) and we have Ez0(F) = {0,∞}.
Moreover, [18, Thm. 2] shows the existence of a function f that is holo-
morphic on D and continuous on D with at least one singularity on ∂D,
for which there is a sequence (qn) of polynomials of near-best uniform ap-
proximation that has no finite limit point of zeros. Hence, in this case
Corollary 2 implies that the family F = {qn : n ∈ N} is strongly expanding
with respect to C \ {0} at every singular point z0 ∈ ∂D of f .

4 Expanding families of derivatives

In the following, we show that under certain conditions, (strong) non-normality
of a family F ⊂M(Ω) at a point z0 ∈ Ω implies that the family of derivatives is
(strongly) expanding at z0 with respect to C\{0}, hence in particular (strongly)
non-normal at z0. Throughout this section, we denote by F(k) the family of kth
derivatives of the functions in F, that is F(k) = {f (k) : f ∈ F}, where k is some
natural number.

Theorem 3. Let Ω ⊂ C be open and F ⊂ M(Ω) be a family of meromorphic
functions. Consider z0 ∈ Ω and suppose that F is (strongly) non-normal at z0.
Further assume that F is not expanding at z0 with respect to C. Then, for every
k ∈ N, the family F(k) is (strongly) expanding at z0 with respect to C \ {0}.
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Proof. We first assume that F is strongly non-normal at z0. By assumption, F is
not expanding at z0 with respect to C, hence there exists an open neighborhood
U1 of z0 and a compact set K1 ⊂ C such that K1 \f(U1) 6= ∅ holds for cofinitely
many f ∈ F.

Now assume that there exists k ∈ N, such that F(k) is not strongly expanding
at z0 with respect to C \ {0}. Then there exists an open neighborhood U2 of z0

and a compact set K2 ⊂ C \ {0} such that K2 \ f (k)(U2) 6= ∅ holds for infinitely
many f ∈ F.

In particular, we can find a sequence (fn) in F, and sequences (c
(1)
n ) in K1

and (c
(2)
n ) in K2, such that the equations fn(z) = c

(1)
n and f

(k)
n (z) = c

(2)
n have

no roots in U := U1 ∩ U2 for every n ∈ N. From [10, Thm. 3.17], which is an
extension of Gu’s famous normality criterion (e.g. [17, 28]), we obtain that (fn)
is normal in U , hence also at z0, in contradiction to the strong non-normality
of F at z0.

If F is non-normal at z0, there exists an infinite subfamily F̃ ⊂ F that is
strongly non-normal at z0. By assumption, F is not expanding at z0 with respect
to C, hence the same holds for F̃, so that by the above argumentation F̃(k) is
strongly expanding at z0 with respect to C \ {0} for every k ∈ N. Hence, F(k)

is expanding at z0 with respect to C \ {0} for every k ∈ N.

Remark 3. It is easily seen that a similar argumentation leads to the following
result: Let Ω ⊂ C be open and F ⊂M(Ω) be a family of meromorphic functions.
Consider z0 ∈ Ω and suppose that F is (strongly) non-normal at z0. Further
assume that for some k ∈ N, the family F(k) is not expanding at z0 with respect
to C \ {0}. Then, the family F is (strongly) expanding at z0 with respect to C.

Corollary 3. Let Ω ⊂ C be open and F ⊂ M(Ω) be a family of meromorphic
functions. Consider z0 ∈ Ω and suppose that F is (strongly) non-normal at z0.
Suppose further that there exists an open neighborhood U of z0 and a number
M > 0, such that for cofinitely many f ∈ F there is a point af ∈ C with
|af | < M and af /∈ f(U). Then, for every k ∈ N, the family F(k) is (strongly)
expanding at z0 with respect to C \ {0}.

Proof. Since it follows from the assumptions that F is not expanding at z0 with
respect to C, the statement follows from Theorem 3.

Note that the assumptions of Corollary 3 are fulfilled if F ⊂ M(Ω) is
(strongly) non-normal at z0 ∈ Ω and for some a ∈ C we have a ∈ Ez0(F),
hence in particular if |Ez0(F)| = 2.

Example 5.

(i) In Example 4 (ii) we considered strongly non-normal families F of polyno-
mials for which Ez0(F) = {0,∞}, hence we obtain that the corresponding
families of derivatives F(k) are strongly expanding at z0 with respect to
C \ {0} for every k ∈ N.
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(ii) Consider the family (fn) with fn := exp◦n, the nth iterate of ez. Then
J(fn) coincides with the Julia set of ez, which is known to equal C ([25]).
According to Example 1, (fn) is strongly non-normal on C. Furthermore,
we obviously have 0 ∈ Ez0(fn) for every z0 ∈ C, so that Corollary 3

implies that for every k ∈ N, the family (f
(k)
n ) is strongly expanding on C

with respect to C \ {0}.

We mention that the statement of Corollary 3 remains valid to some extent,
if instead of omitting a value af in some neighborhood of z0, cofinitely many
functions f ∈ F have a value af that they take with sufficiently high multiplicity
in that neighborhood.

Proposition 3. Let Ω ⊂ C be open and F ⊂M(Ω) be a family of meromorphic
functions. Consider z0 ∈ Ω and suppose that F is (strongly) non-normal at z0.
Suppose further that there exists an open neighborhood U of z0, a number M > 0
and some k ∈ N, such that for cofinitely many f ∈ F there is a point af ∈ C
with |af | < M , such that the af -points of f in U have multiplicity at least k+2.
Then the family F(k) is (strongly) expanding at z0 with respect to C \ {0}.

Proof. Again, we first consider the case that F is strongly non-normal at z0.
Assuming that F(k) is not strongly expanding at z0 with respect to C \ {0},
there exists an open neighborhood U1 of z0 and a compact set K ⊂ C \ {0}
such that K \ f (k)(U1) 6= ∅ for infinitely many f ∈ F. In particular, we can
find a sequence (cn) in K with cn → c for some c 6= 0, and a sequence (fn)

in F such that cn /∈ f (k)
n (U1) for every n ∈ N. Considering the sequence (gn)

with gn(z) = fn(z) − afn , we obtain that for n sufficiently large, the functions
gn only have zeros of multiplicity at least k + 2 in U ′ := U ∩ U1. Furthermore,

since cn /∈ g(k)
n (U ′) for every n ∈ N, it follows from [9, Lemma 2.7] that (gn) is

normal in U ′, and as |afn | < M for every n ∈ N, the same holds for the family
(fn). This is in contradiction to the strong non-normality of F at z0.
If F is non-normal at z0, the statement follows as before from the fact that F

contains a strongly non-normal subfamily.

In general, the number k + 2 can not be replaced by k + 1 in Proposition 3.
Indeed, for fixed k ∈ N, the family (fn) with

fn(z) =
1

k!

zk+1

(z − 1
n )
,

is strongly non-normal at the point 0 and has only zeros of multiplicity k + 1

(see also [30]). But as f
(k)
n (z) 6= 1 for every n ∈ N and every z ∈ C, the familiy

(f
(k)
n ) is obviously not expanding at 0 with respect to C \ {0}. Nevertheless,

under certain additional conditions, k + 2 can be replaced by k + 1:

Proposition 4. Under each of the following additional conditions, the state-
ment of Proposition 3 remains valid if k + 2 is replaced by k + 1.
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(i) The functions f ∈ F are holomorphic in Ω.

(ii) The functions f ∈ F only have multiple poles.

(iii) There exists a sequence (zn) in Ω with zn → z0 and F is strongly non-
normal at zn for every n ∈ N.

Proof. Using [7, Lemma 4] and [26, Lemma 6], respectively, the proofs of (i)
and (ii) are similar to the proof of Proposition 3. In order to prove the third
statement, we note that using [8, Lemma 2.9], a similar argumentation as in the
proof of Proposition 3 implies that the family (gn) with gn(z) = fn(z)− afn is
quasinormal in some neighborhood U of z0. Since |afn | < M for every n ∈ N,
the same then holds for the family (fn) ([10, Lemma 5.2]). This contradicts the
assumption that the set {z : F is strongly non-normal at z} has an accumula-
tion point in U .
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