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Abstract
We investigate the behaviour of families of meromorphic functions in
the neighborhood of points of non-normality and prove certain covering
properties that complement Montel’s Theorem. In particular, we also
obtain characterizations of non-normality in terms of such properties.
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1 Introduction

For an open set Q2 C C we denote by M () the set of meromorphic functions on
Q, by which we mean all functions whose restriction to a connected component
of Q is either meromorphic or constant infinity. Endowed with the topology of
spherically uniform convergence (i.e. uniform convergence with respect to the
chordal metric x) on compact subsets of €, the space M () becomes a complete
metric space (e.g. [12, Chap. VII]). As usual, we say that a family F C M (Q)
is normal at a point zg € Q, if every sequence (f,,) C F contains a subsequence
(fn,) that converges spherically uniformly on compact subsets of some open
neighborhood U of zg to a function f € M(U). By J(F) we denote the set of
points in €2, at which the family ¥ is non-normal. If zy € J(F), the family F
can still have infinite subfamilies F C F that are normal at Zp, in other words,
z0 € J(F) does in general not imply zy € J(§")~ We say that F is strongly
non-normal at a point 2o € €, if we have zy € J(JF) for every infinite subfamily
F C F. We further say that F is strongly non-normal on a relatively closed set
B C Q, if F is strongly non-normal at every zg € B, that is if B C J(F) for
every infinite subfamily Fc9. Moreover, we call F hereditarily non-normal on
B, if some infinite subfamily § C ¥ is strongly non-normal on B. Note that
on a single point set, hereditary non-normality is equivalent to non-normality,
while this is in general not true for sets containing at least two points.

For a family 3 C M(Q2) and an open set U C €2, we write limsup F(U) for
the intersection of all (J;c4 f(U), where F ranges over the cofinite subsets of F.

Moreover, for zy € £ we denote by limsup, J the intersection of lim sup F(U)



taken over all neighborhoods U C € of z,. Similarly, we write liminf F(U)
for the union of all ;.5 f(U), where F ranges over the cofinite subsets of F
and liminf,, F for the intersection of lim inf F(U) taken over all neighborhoods
U C Q of z9. Obviously, we have that liminf,, F C limsup, ¥, furthermore
liminf., F = N5 5 infnite M SUP,, I

The classical Montel Theorem suggests that the behaviour of families F C
M () in neighborhoods of points zy € J(F) consists in some sense in spread-
ing points, since it asserts that for every zo € J(F), the set E, (F) := Cx \
limsup, & contains at most two points. Hence, for every neighborhood U of
20, every point a € C is covered by f(U) for infinitely many f € F, with
at most two exceptions. In case that F. (F) contains two points and F is
strongly non-normal at zg, a further consequence of Montel’s Theorem is that
liminf,, ¥ = limsup, ¥, so that for every neighborhood U of zp, every point
a € Coo \ E,,(F) is covered by f(U) for cofinitely many f € F. Note, however,
that Montel’s Theorem does not contain any information about the ‘size’ of the
individual sets f(U), for instance, if U is any neighborhood of a point zy € J(F),
it is in general not clear if for a given set A C limsup, JF we have A C f(U) for
infinitely many f € &.

In this note, we will further investigate the behaviour of (strongly) non-
normal families near points of non-normality and show certain covering and
‘expanding’ properties that complement that statement of Montel’s Theorem.
In particular, we will also derive different characterizations of (strong) non-
normality in terms of these properties.

2 Non-normality and topological transitivity

We say that a family F C M(Q) is (topologically) transitive with respect to a
point zy € €, if for every pair of non-empty open sets U C Q and V C C
with 29 € U, there exists f € F such that f(U) NV # 0. Note that in this
case we have f(U)NV # ) for infinitely many f € F. If f(U) NV # () holds
for cofinitely many f € F, we say that F is (topologically) mixing with respect
to zg. Furthermore, if for every non-empty open set U C Q with 2y € U and
every pair of non-empty open sets V;, Vo C C, there exists f € F such that
fFO)YNV; # 0 for i = 1,2, we say that F is weakly mixing with respect to
z0- Finally, we say that J is transitive (or (weakly) mixing) with respect to a
relatively closed set B C Q, if F is transitive (or (weakly) mixing) with respect
to every zp € B.

With these notations, we obtain the following characterization of (strong)
non-normality.

Theorem 1. Let Q C C be open, F C M(Q) a family of meromorphic functions
and zg € Q. Then we have:

(a) F is strongly non-normal at zo if and only if F is mizing with respect to
Z0-



(b) The following are equivalent:

(i) F is non-normal at z.

(ii) There exists an infinite subfamily F C T that is mixing with respect
to zg.

(iti) F is weakly mizing with respect to zg.

Proof. (a): Let F be strongly non-normal at zy and suppose that F is not
mixing with respect to zg. Then there exist non-empty open sets U C €2 and
V C C with 29 € U, and an infinite subfamily F C F such that f(U)NV =0
for every f € F. By Montel’s Theorem, we obtain that F is normal on U, hence
also at zp, in contradiction to the strong non-normality of F at z.

On the other hand, suppose that F is mixing with respect to zy € €,
but not strongly non-normal at zy. Then there exists an open neighborhood
U of zp and a sequence (f,) C F, such that (f,) converges spherically uni-
formly on compact subsets of U to a function f € M(U). For A > 0 we set
Dy(z0) == {2z € C: |z — 2| < A} and D{(wp) := {w € Cx : x(w,wp) < A},
where zg € C and wg € C, and denote by Dy(zo) the closure of Dy(zg) in C.
Then, for ¢ > 0 sufficiently small, we have that D.(zy) C U and there exists
§ > 0 and wy € Co such that DX(wg) C Coo \ f(De(20)). Since (f,) is mixing
with respect to zg, we obtain that f,,(D:(20)) N D (wg) # 0 for all n sufficiently
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large, in contradiction to the spherically uniform convergence of (f,) to f on
DE(ZQ).

(b): (i) = (4i) : Since F is non-normal at zg, there exists an infinite subfamily
F C F that is strongly non-normal at zy. This subfamily is mixing with respect
to zg according to the first statement of the Theorem.
(i) = (vit): This is clear, since a mixing family is also weakly mixing.
(#i7) = (4): Suppose that F is weakly mixing with respect to zp. Further consider
two non-empty open sets Vi, Va C Cq such that inf,cv, wev, X(2,w) > € for
some € > 0. For k € N, we set Uy, := {z € C: |z — 29| < £}NQ. By assumption,
for every k € N there is a function f; € F such that fi(Uy) ﬂ V1 # 0 and
J(Ug) N Vo # B, and hence pomts Z,(C ), () € U, such that fk( ) € V1 and
fk(z,(f)) € V5. Note that z,il), ) ¢ U 1mphes that z( ) 2o and z,(f) — 2g for
k — oo, furthermore we have that x(fk(zk ), fe(z ,22))) > ¢ for every k € N, and

hence ) . ) .
x(felz0) fez) > 5 or x(filzo). fulz57) > 5.

Hence, we can find a sequence (zj) with zx, — 2o for & — oo and x(fx(20), fr(zk)) >
5 for every k € N, implying that the family J is not spherically equicontinuous
at zg, and thus also not normal.

O

By Montel’s Theorem, it is clear that zo € J(F) implies that F is transitive
with respect to zg. On the other hand, it is easily seen that transitivity of a



family with respect to some point zy € €2 is in general not sufficient for non-
normality at zg. For instance, if (z,) is a sequence that is dense in C, the
family (f,) of constant functions f, = z, is transitive with respect to any
20 € Q, while at the same time we have J(f,) = 0. However, the following
proposition shows that this example is in some sense typical:

Proposition 1. Let Q@ C C be open, F C M(Q) a family of meromorphic
functions and zy € Q. Suppose that F is transitive with respect to zy and that
2o & J(F). Then Ugcg f(z0) is dense in C.

Proof. Suppose that Uscg f(20) is not dense in C. Then there is w € Co and
e > 0, such that Useg f(z0) N DX(w) = 0, where DX(w) := {z € C : x(2,w) <
e}. Consider now for k € N the sets Uy, := {z € C: |2 — 2| < £} N Since
JF is transitive with respect to zp, for every k € N there is fy € F such that
fe(Uk) N D%‘ (w) # 0. In particular, there is a sequence (z) with z;, € Uy, and
hence z — 2o for k — oo, such that fi(z) € D%C (w) for k € N. On the other
hand, we have f;(z0) ¢ DX(w) for k € N. Finally, we obtain that

X(fx(20), fr(z1)) >

for every k € N,

IR

so that F is not spherically equicontinuous at zy, and thus also not normal, that
is zo € J(T).
O

Example 1.

(i) Let f be a transcendental entire function, and let F := {f°™ : n € N} be
the family of iterates of f. Then F is strongly non-normal on the Julia
set J = J(F) (e.g. [1/]), as follows e.g. from the facts that the repelling
periodic points are dense in J and that J is the boundary of the escaping
set (e.g. [29]). Here we have liminf, F D C\ E for each zy € J, where E
is the (empty or one-point) set of Fatou exceptional values of f, that is the
set of points w € C whose backward orbit O~ (w) = J,,>,{z : f°"(2) = w}
is finite. B
Indeed, consider zg € J(F) and an infinite subfamiliy F= {f°™ : k € N}.
It follows from Picard’s Theorem that if a € C is not Fatou exceptional,
there are points aj,az € C with ay # az and f°%(a1) = a = f°%(as).
Since F is strongly non-normal at zg, Montel’s Theorem implies that the
set C\ limsup, I~ contains at most one point, where I~ := {folm=2) .
k € N}. Hence, {a1,az}Nlimsup, F~ # 0, which implies a € lim sup,, F.

(ii) Let M denote the Mandelbrot set and let, with py := idc, the family (p,)
of polynomials of degree 2" be recursively defined by p, := p2_; + idc.
Since p, — 00 pointwise on C\ M for n — oo and |p,| < 2 on M (e.g.
[0]), we have OM C J(F), where F := {p, : n € No}, and no infinite
subfamily of F can be normal at any point of OM. Hence, F is strongly
non-normal and thus mizing on OM.



(iii) A function f € M(C) is called Yosida function, if it has bounded spherical
deriwative f* (e.g. [31, 2/]). Hence, if f is not a Yosida function, there
erists a sequence (zp) in C with z, — oo and f*(z,) — oo for n —
o0o. Marty’s Theorem (e.g. [28, p.75]) implies that the family (fn) with
fn(2) := f(z + 2zy) is strongly non-normal at 0, hence by Theorem 1, we
obtain that (f,) is mizing with respect to 0. Note that it is easily seen
that if f € M(C) is a Yosida function, then its order of growth is at most
2, while entire Yosida functions are necessarily of exponential type (e.g.

[11, 24])-

For a family of meromorphic functions ¥ C M(2) and N € N, we con-
sider the family F*V = {f*N . f € F}, where f*¥ : QN — C&Y with
Nzt 2n) = (f(21)s- -, f(2n)). We say that <V is transitive with re-
spect to z € QN if for every pair of non-empty open sets U C Q¥ and V c CY
with z € U, there exists f*¥ € ¥ such that f*N(U) NV # (). Furthermore,
for a relatively closed set B C €, we say that F*V is transitive with respect
to BY, if 7V is transitive with respect to every z € BY. We then have the
following characterization of hereditary non-normality.

Proposition 2. Let Q C C be open, F C M(Q) a family of meromorphic
functions and B C Q) closed in . Then the following are equivalent:

(i) F is hereditarily non-normal on B.
(i) There exists an infinite subfamily F C F that is mizing with respect to B.
(iii) For all N € N the family <N is transitive with respect to BN .

Proof. The equivalence of (i) and (i7) follows from Theorem 1.

(ii) = (ii7): Without loss of generality consider F to be countable, F =
{f. :n € N} say. Let N € N and consider non-empty open sets U C Q¥ and
V c CY with BN NU # (. Then there exist non-empty open sets Uy, ..., Uy
with Uy x -+ x Uy CU and BNU; # () for i =1,..., N, and non-empty open
sets Vi,...,Vy C Cy with Vi x .-+ x Vy C V. According to the assumption,
{fn : n > m} is transitive with respect to B, for all m € N. Inductively, we
can find a strictly increasing sequence (ny) in N with f,, (U1) N Vi # 0 for all
k € N. By assumption, the family {f,, : k¥ € N} is transitive with respect to
B. Thus, the same argument as above yields the existence of a subsequence
(n,(f)) of (ng)) = (ng) with fnf)(UQ) NV, # 0§ for all k& € N. Proceeding in

the same way, for any 2 < j < N we find subsequences (n,(gj)) of (n,ij_l)) with

f.0(U;) NV # 0 for all k € N. In particular, for n := ngN), we obtain that
k

(fn<U1) X an(UN))m(Vl Koo XVN)?&(ZL

hence also fXN(U)NV # 0, implying that <V is transitive with respect to
BN,

(#4i) = (i4): The proof follows along the same lines as the proof of the
corresponding part of the Bes-Peris Theorem (e.g. [21, pp. 76]). O



Remark 1.

(i)

(i)

Let X(A) denote the hyperspace of A C C, that is, the space of all non-
empty compact subsets of A endowed with the Hausdorff metric, and sup-
pose that B as in Proposition 2 has non-empty interior. Then [2, Cor.
1.2] shows that, under the conditions of Proposition 2, for each C-closed
set A C B which coincides with the closure of its interior, the family F|g
is dense in C(E,Cx) for generically many sets E € K(A).

We mention that Proposition 2 is an extension of Theorem 3.7 from the
recent paper [/].

Example 2.

(i)

(i)

Consider a function f(z) = Y.)°  a,z” that is holomorphic on the unit
disk D. Suppose that f has at least one singularity on 0D and denote
by D C 0D the set of all singularities. Then, denoting by s,(z) :=
(snf)(2) == >0'_yayz” the nth partial sum of f, the family (s,) is non-
normal on 0D and strongly non-normal on D. Moreover, in case D # 0D,
Vitali’s Theorem implies that a subsequence of (s,) forms a normal family
at a point zg € 0D\ D if and only if it converges to an analytic continua-
tion of f in some neighborhood of zy. From refined versions of Ostrowski’s
results on overconvergence ([10, Thms. 3 and 4]), it follows that a subse-
quence (Sy,, ) is strongly non-normal at zo € ID\ D if and only if (sp) has
no Hadamard-Ostrowski gaps relative to (ny), that is, if and only if there
is a sequence (0y) of positive numbers tending to 0 with

1/v

sup la, """ — 1

(1=0k)nk<v<ng

as k — oo. In this case, the sequence (sy, ) is already strongly non-normal
at all z € OD. Since the non-normality of (s,) on D implies that, given
zo € D\ D, some subsequence of (s,) is strongly non-normal at zy, we
finally obtain that the family (s,) is always hereditarily non-normal on
aD.

According to a result of Gardiner ([15, Cor. 3]), for each f that is ana-
lytically continuable to some domain U such that C\ U is thin at some
zo € OD but not continuable to the point zy, the sequence (s,) has no
Hadamard-Ostrowski gaps with respect to any (ny), hence (sy,) is strongly
non-normal on OD. In particular, this holds for each f that has an isolated
singularity at some point zg € OD.

We write Hy for the space of functions holomorphic on C\ {1} that vanish
at co. For f(z) = 1/(1 — 2), the sequence (s, f) is the geometric series
which tends to co spherically uniformly on compact subsets of C\D. From
[3, Thm. 1.1] it can be deduced that generically many functions f € Hy
enjoy the property that some subsequence of the sequence ((f—snf)(2)/2")
converges to 1/(1—z) spherically uniformly on compact subsets of Coo\{1}.



This implies that the corresponding subsequence of (s, f) converges to co
spherically uniformly on compact subsets of C\D and thus forms a normal
family on C\ D. In particular, (s,f) is not strongly non-normal at any
point zo € C\ D.

On the other hand, if A is a countable and dense subset of C\ D, from
[253, Thm. 2] it follows that for generically many functions f € Hy a
subsequence (sp, f) of (snf) converges to 0 pointwise on A. Since a result
from [22] implies that for f € Hy, normality of a subsequence of (spf)
at a point zg € C\ D forces the subsequence to tend to oo spherically
uniformly on compact subsets of some neighborhood of zy, it follows that
no subsequence of (sn, f) can form a normal family at any point of C\D.
By the previous example, (s, f) is strongly non-normal on D for f € Hy,
thus we obtain that for generically many f € Hy, the family (snf) is
hereditarily non-normal on C\ D. By Remark 1, for generically many
f € Hy, the sequence (s, f|g) is dense in C(E,Cy) for generically many
E € X(C\D) (see also [1, Thm. 2]).

3 Non-normality and expanding families

We define the following ‘expanding’ property of families ¥ C M (Q).

Definition 1. Let Q C C be open, F C M(Q) a family of meromorphic functions
and zg € Q. Consider further a set A C Cy. We say that F is expanding at zg
with respect to A, if for every open neighborhood U of zg and every compact set
K C A we have K C f(U) for infinitely many f € F. If K C f(U) holds for
cofinitely many f € F, we say that F is strongly expanding at zo with respect to
A. Finally, we say that F is (strongly) expanding on a set B C Q with respect
to A, if F is (strongly) expanding with respect to A at every zy € B.

Note that if F is expanding at zg with respect to A, there exists an infinite
subfamily F C F which is strongly expanding at zo with respect to A. Moreover,
in this case we have that A is contained in limsup, F. Also note that JF is
strongly expanding at 2o with respect to A if and only if every infinite subfamily
F C JF is expanding at zy with respect to A, and in this case A is contained in
liminf,, F. On the other hand, we remark that A C liminf, F does in general
not imply that F is (strongly) expanding at zo with respect to A. This can for
instance be seen by considering the family F := {€"* + (1 — 1) : n € N}, for
which we have liminfy & = C, but F is not expanding at 0 with respect to any
set A C C with 1 € A°.

Our next result establishes a relationship between strong non-normality and
the expanding property. Here and in the following, we denote by |E| € NoU{oo}
the number of elements of a set £ C C.

Theorem 2. Let Q C C be open, F C M(R2) a family of meromorphic functions
and zg € Q. Then we have:



(i) If J is strongly non-normal at zy, then for each infinite subfamily FcT
there exists E C Coo with |E| < 2, such that F is expanding at zy with
respect to Coo \ E. Moreover, F is strongly expanding at zo with respect to
Coo \ €, where € :=Ugcg infinite E5 with E5 C Coo being some set such

that F is expanding at zg with respect to Co. \ E5-.

(i) If |liminf,, F| > 2, then F is strongly non-normal at zy. In particular,
this holds if F is strongly expanding at zo with respect to some A C Cy
with |A| > 2.

Proof. (i): Suppose that J is strongly non-normal at zo and consider an infinite
subfamily ¥ C F. Then ¥ is strongly non-normal at zy and assuming that F is
not expanding at zyp with respect to Co, \ E for any F C Cy with |E| < 2, we
obtain that for every E C C,, with |E| < 2 there is an open neighborhood U of
2z and a compact set K C C \ E, such that K\ f(U) # 0 for cofinitely many
f € F. In particular, if F is not expanding at zo with respect to C,, we can
find an open neighborhood U; of zp, a sequence (f,,) in F, and a sequence (a,,)
in Co with a,, — a € Co for n — oo, such that a, ¢ f,(U1) for every n € N.
By assumption, F is not expanding at zg with respect to Co, \ {a}, hence, there
is an open neighborhood Us of zy and a compact set Ko C Co \ {a}, such that
K>\ f(Uy) # 0 for cofinitely many f € F. In particular, there is a subsequence
(fn,) in F, and a sequence (by) in Ky with by — b € Ky for k — oo, such that
bi & fn,(Ua) for every k € N. Since F is not expanding at zo with respect to
Cwo \ {a, b}, a similar argumentation leads to an open neighborhood Us of zg, a
compact set K3 C Coo \ {a, b}, a subsequence (f,,, ) in F and a sequence (¢;) in
K3 with ¢; — ¢ € K3 for I — oo, such that ¢; ¢ fnkl (Us) for every I € N.
Finally, setting U = U; N Uz N U3 we obtain that

{any, s by e} O fo,, (U) =0 for every I € N.
Furthermore, since a, b, ¢ are pairwise distinct, there exists € > 0 such that

X(ankl ) bkl) X(bklacl) X(ankl ) Cl) > g,

for | € N sufficiently large, so that Carathéodory’s extension of Montel’s Theo-
rem (e.g. [28, p.104]) implies that (fnkl) C ¥ is normal on U, hence also at zp,

in contradiction to the strong non-normality of F at z.

To prove the second statement, suppose that F is not strongly expanding
at zp with respect to Co, \ €. Then there is an infinite subfamily FcF that
is not expanding at zy with respect to C \ &, contradicting the fact that F
is expanding at zy with respect to Co \ E5 for some set E5 C Co with E5 C €.

(i4): Suppose that for some infinite subfamily F = {f, : n € N} of F the
sequence ( f,,) is spherically uniformly convergent on compact subsets of a neigh-
borhood of zp. Then limsup,, F is a one-point set, and hence |liminf,, | < 1.
The second statement follows from the fact that in this case we have A C
liminf, J.

O



Remark 2. Note that if F is strongly non-normal at zo, F does not need to be
strongly expanding at zo with respect to any open set A C Coo. Indeed, let (qn)
be an enumeration of the Gaussian rational numbers with ¢ /n — 0 as n — oo
and consider the family (f,) with f,(z) := €™ + q, for z € C. From Marty’s
Theorem, it is easily seen that (fy,) is strongly non-normal on the imaginary azis
iR, but for a point zy € iR and an open neighborhood U of zy, we do not have
K C fn(U) for n sufficiently large for any compact set K C C with K° # ().

From Theorem 2 we easily obtain the following characterization of non-
normality in terms of the expanding property, which in some sense complements
the statement of Montel’s Theorem:

Corollary 1. Let Q C C be open, F C M () a family of meromorphic functions
and zy € Q). Then the following are equivalent:

(i) There exists A C Coo with |A| > 2 such that F is expanding at zp with
respect to A.

(i) F is non-normal at zo.

(i1i) There exists E C Coo with |E| < 2 such that F is expanding at zo with
respect to Co, \ E.

Proof. (i) = (ii): Suppose that J is expanding at zo with respect to some
A C C, with |[A] > 2. Then there exists an infinity subfamily F C J that is
strongly expanding at zy with respect to A. By Theorem 2, the family F is
strongly non-normal at zg, hence F is non-normal at zj.
(i4) = (iii): If F is non-normal at zo, there exists an infinite subfamily ¥ C F
that is strongly non-normal at zp. By Theorem 2, there then exists £ C Cy
with |F| < 2 such that J is expanding at zg with respect to C, \ E. The same
then holds for the family F.
(#i7) = (4) is obvious.

O

Let § € M() be a family that is non-normal at a point zy €  and
consider the set F,,(F) = C \limsup, F. If F is expanding at 2o with respect
to C \ E for some set E C C., we obviously have E, (F) C E. If Fis a
family of holomorphic functions on €2 that is (strongly) non-normal at z, we
have co € E, (), so that in this case we obtain that the expanding property
of F at zp in Theorem 2 and Corollary 1 holds with respect to C\ E for some
set £ C C with |E| < 1.

Example 3.

(i) Consider a compact set K C C with connected complement and let f be a
function that is continuous on K and holomorphic in K°. Further assume
that f has at least one singularity on OK and denote by D C OK the
set of all singularities. Let (py) be a sequence of polynomials converging
uniformly on K to f (such a sequence exists by Mergelian’s Theorem).



Then, (py) is strongly non-normal on D, hence also expanding at every
point zo € D with respect to C\ E for some set E C C with |E| < 1.
Indeed, since otherwise there exists a point zo € D, an open neighborhood
U of zp, and a subsequence (pn,) of (pn) that converges uniformly on
compact subsets of U to a function holomorphic in U, contradicting that
f does not have an analytic continuation across zg € D.

(i1) Consider the function f(z) = |z| on the interval [—1,1] and denote by (p})
the sequence of polynomials of best uniform approximation to f on [—1,1].
Then, according to the previous example, (p}) is strongly non-normal at
the point 0. However, since p)(z) — oo for n — oo spherically uniformly
on compact subsets of C\ [—1,1] (e.g. [27]), the family (p}) is strongly
non-normal on [—1,1], hence expanding at every point zo € [—1,1] with
respect to C\ E for some set E C C with |E| < 1. (Note that the strong
non-normality on [—1,1] also holds for several specific ray sequences of
best uniform rational approximants to f on [—1,1] ([27, Cor. 1.3]).) In
fact, [5, Cor. 2] implies that (pf) is expanding on [—1,1] with respect to
C, as it shows the existence of a subsequence (p},, ) of (p;,) that is strongly
expanding on [—1,1] with respect to C.

(iii) Consider again a function f(z) = > .°,a,z" that is holomorphic on D
and has at least one singularity on OD. Then the family of partial sums
(sn) is non-normal on 0D, hence, (s,) is expanding at every zy € OD
with respect to C\ E for some set E C C with |E| < 1. In fact, (sn)
is expanding on D with respect to C, as results in [13, 5] show that if
(an,) is a sequence such that limy_, oo |ank|ﬁ =1, the subfamily (sp,) is
strongly expanding on 0D with respect to C.

A further consequence of Theorem 2 and the fact that we have E, (F) C E
if F C M(Q) is expanding at zg € Q with respect to Co, \ E is the following
statement for the case |E,,(F)| = 2.

Corollary 2. Let Q C C be open and F C M () be a family of meromorphic
functions. Consider zg € Q and suppose that F is (strongly) non-normal at zg
and that |E,,(F)| = 2. Then F is (strongly) expanding at zy with respect to

Coo \ B (9).

Proof. Suppose that F is non-normal at zyp. By Corollary 1, there then exists
E C Cy with |E| < 2 such that F is expanding at zg with respect to Coo \ E.
Since E.,(F) C E, we obtain E. (F) = E. If J is strongly non-normal at zo,
every infinite subfamily ¥ C F is non-normal at zo with E, (F) = E,, (F), hence
expanding at zg with respect to Coo \ E, (F).

O

Example 4.

(i) Consider again the family F := {e"* + (1 — 1) : n € N}, which is strongly
non-normal at the point 0. It is easily seen that F is strongly expanding at 0

10



(i)

4

with respect to Coo\{1, 00}, but since Eo(F) = {oo}, this can not be derived
from Corollary 2. On the other hand, the family F :={e"*+(1— %) :n €
N} is strongly non-normal at the point 0 with Eo(F) = {1,000}, so that in
this case Corollary 2 can be applied.

Consider again a power series f(z) = >.o—a,z" with radius of conver-
gence 1 and denote by (s,,) its partial sums. As mentioned in Example 3,
the family F = {s, : n € N} is expanding on 0D with respect to C, so that
for every zop € 0D we have E,,(F) = {oc} (note that this is also easily
derived from the classical Jentzsch Theorem ([19]) stating that for every
a € C, every zg € 9D is a limit point of a-points of the partial sums). How-
ever, a further result of Jentzsch ([20]) states that there exist power series
with radius of convergence 1, such that the zeros of some subsequence (sy,,)
of the partial sums do not have a_finite limit point. Hence, in this case
Corollary 2 shows that the family F = {s,, : k € N} is strongly expanding
with respect to C\ {0} at every point zy € 0D at which the function does
not admit an analytic continuation (there must be at least one such point),
since F is strongly non-normal at such zy with E.,(F) = {0,00}.

In a similar vein, it was shown in [18, Thm. 1] that there exists a func-
tion f holomorphic on D and continuous on D with at least one singular-
ity on D, for which the zeros of some subsequence (py, ) of the sequence
(pr) of polynomials of best uniform approximation do not have a finite
limit point. Hence, as before, Corollary 2 can be applied to the family
F = {p;, : k € N} at every singular point zg € OD of f, since F is
strongly non-normal at zo (see Example 3) and we have E,,(F) = {0, 00}.
Moreover, [18, Thm. 2] shows the existence of a function f that is holo-
morphic on D and continuous on D with at least one singularity on OD,
for which there is a sequence (q,) of polynomials of near-best uniform ap-
prozimation that has no finite limit point of zeros. Hence, in this case
Corollary 2 implies that the family F = {q, : n € N} is strongly expanding
with respect to C\ {0} at every singular point zo € D of f.

Expanding families of derivatives

In the following, we show that under certain conditions, (strong) non-normality
of a family F C M(Q) at a point 2o € Q implies that the family of derivatives is
(strongly) expanding at zo with respect to C\ {0}, hence in particular (strongly)
non-normal at zg. Throughout this section, we denote by F*) the family of kth
derivatives of the functions in F, that is F*) = {f(*®) . f € F}, where k is some
natural number.

Theorem 3. Let 2 C C be open and F C M(Q) be a family of meromorphic
functions. Consider zy € Q and suppose that F is (strongly) non-normal at zg.
Further assume that F is not expanding at zg with respect to C. Then, for every
k €N, the family T*) is (strongly) expanding at zy with respect to C\ {0}.

11



Proof. We first assume that F is strongly non-normal at zg. By assumption, F is
not expanding at zo with respect to C, hence there exists an open neighborhood
U of zp and a compact set K7 C C such that K7\ f(U;) # 0 holds for cofinitely
many f € F.

Now assume that there exists k € N, such that F*) is not strongly expanding
at zo with respect to C\ {0}. Then there exists an open neighborhood Us of 2
and a compact set Ky C C\ {0} such that K, \ f*)(Us,) # 0 holds for infinitely
many f € J.

In particular, we can find a sequence (f,) in &, and sequences (CSP) in K3
and (cg)) in K>, such that the equations f,(z) = e and fy(,k)(z) = ¢ have
no roots in U := Uy NUs for every n € N. From [10, Thm. 3.17], which is an
extension of Gu’s famous normality criterion (e.g. [17, 28]), we obtain that (f,)
is normal in U, hence also at zy, in contradiction to the strong non-normality
of F at zg.

If F is non-normal at zp, there exists an infinite subfamily F C F that is
strongly non-normal at zp. By assumption, & is not expanding at zo with respect
to C, hence the same holds for ¥, so that by the above argumentation F*) is
strongly expanding at zo with respect to C \ {0} for every k € N. Hence, F*)
is expanding at zp with respect to C\ {0} for every k € N.

O

Remark 3. It is easily seen that a similar argumentation leads to the following
result: Let Q C C be open and F C M(Q) be a family of meromorphic functions.
Consider zg € Q and suppose that F is (strongly) non-normal at zo. Further
assume that for some k € N, the family F*) is not expanding at zy with respect
to C\ {0}. Then, the family F is (strongly) expanding at zo with respect to C.

Corollary 3. Let Q C C be open and F C M(Q) be a family of meromorphic
functions. Consider zy € Q2 and suppose that F is (strongly) non-normal at zg.
Suppose further that there exists an open neighborhood U of zy and a number
M > 0, such that for cofinitely many f € JF there is a point ay € C with
lay| < M and ay ¢ f(U). Then, for every k € N, the family F*) is (strongly)
expanding at zo with respect to C\ {0}.

Proof. Since it follows from the assumptions that F is not expanding at zy with
respect to C, the statement follows from Theorem 3.
O

Note that the assumptions of Corollary 3 are fulfilled if ¥ C M(Q) is
(strongly) non-normal at zp € © and for some a € C we have a € E, (F),
hence in particular if |E,, ()| = 2.

Example 5.

(i) In Example 4 (ii) we considered strongly non-normal families F of polyno-
mials for which E,,(F) = {0,00}, hence we obtain that the corresponding
families of derivatives F*) are strongly expanding at zy with respect to
C\ {0} for every k € N.

12



(i) Consider the family (f,) with f, := exp°®”, the nth iterate of e*. Then
J(fn) coincides with the Julia set of €*, which is known to equal C ([25]).
According to Example 1, (fy) is strongly non-normal on C. Furthermore,
we obviously have 0 € E, (fn) for every zo € C, so that Corollary 3
implies that for every k € N, the family ( ,(Lk)) is strongly expanding on C
with respect to C\ {0}.

We mention that the statement of Corollary 3 remains valid to some extent,
if instead of omitting a value a; in some neighborhood of zy, cofinitely many
functions f € J have a value ay that they take with sufficiently high multiplicity
in that neighborhood.

Proposition 3. Let Q C C be open and F C M () be a family of meromorphic
functions. Consider zy € Q0 and suppose that F is (strongly) non-normal at zy.
Suppose further that there exists an open neighborhood U of zy, a number M > 0
and some k € N, such that for cofinitely many f € F there is a point ay € C
with |ag| < M, such that the ay-points of f in U have multiplicity at least k+ 2.
Then the family F*) is (strongly) expanding at zo with respect to C \ {0}.

Proof. Again, we first consider the case that F is strongly non-normal at z.
Assuming that F*) is not strongly expanding at zy with respect to C\ {0},
there exists an open neighborhood U; of zy and a compact set K C C\ {0}
such that K \ f*)(U,) # 0 for infinitely many f € F. In particular, we can
find a sequence (c,) in K with ¢, — ¢ for some ¢ # 0, and a sequence (f,)
in F such that ¢, ¢ fy(Lk)(Ul) for every n € N. Considering the sequence (g,,)
with g,(2) = fn(2) — ay,, we obtain that for n sufficiently large, the functions
gn only have zeros of multiplicity at least k + 2 in U’ := U N U;. Furthermore,
since ¢, ¢ g%k)(U’) for every n € N, it follows from [J, Lemma 2.7] that (gy,) is
normal in U’, and as |ay, | < M for every n € N, the same holds for the family
(fn). This is in contradiction to the strong non-normality of F at z.
If ¥ is non-normal at zg, the statement follows as before from the fact that F
contains a strongly non-normal subfamily.

O

In general, the number k 4 2 can not be replaced by k 4 1 in Proposition 3.

Indeed, for fixed k € N, the family (f,,) with
1kt
fal2) = jx] @7

is strongly non-normal at the point 0 and has only zeros of multiplicity k£ + 1
(see also [30]). But as fék)(z) # 1 for every n € N and every z € C, the familiy

( f,(Lk)) is obviously not expanding at 0 with respect to C\ {0}. Nevertheless,
under certain additional conditions, k + 2 can be replaced by k + 1:

Proposition 4. Under each of the following additional conditions, the state-
ment of Proposition 3 remains valid if k + 2 is replaced by k + 1.

13



(i) The functions f € F are holomorphic in .
(i) The functions f € F only have multiple poles.

(i1i) There exists a sequence (zn) in Q with z, — 2o and F is strongly non-
normal at z, for every n € N.

Proof. Using [7, Lemma 4] and [26, Lemma 6], respectively, the proofs of (7)
and (¢7) are similar to the proof of Proposition 3. In order to prove the third
statement, we note that using [3, Lemma 2.9], a similar argumentation as in the
proof of Proposition 3 implies that the family (g,) with g,(2) = fn(2) — ay, is
quasinormal in some neighborhood U of z. Since |ay,| < M for every n € N,
the same then holds for the family (f,,) ([10, Lemma 5.2]). This contradicts the
assumption that the set {z : F is strongly non-normal at z} has an accumula-
tion point in U.

O
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