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ABSTRACT. The Taylor (backward) shift on Bergman spaces Ap(Ω) for gen-
eral open sets Ω in the extended complex plane shows rich variety concerning
its dynamical behaviour. Different aspects are worked out, where in the case
p < 2 a recent result of Bayart and Matheron plays a central role.
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1. INTRODUCTION

Let Ω be an open subset of the Riemann sphere C∞, where C∞ is equipped
with the spherical metric. Moreover, let H(Ω) denote the Fréchet space of func-
tions holomorphic in Ω and vanishing at ∞, endowed with the topology of com-
pact convergence. If 0 ∈ Ω, the Taylor (backward) shift T : H(Ω) → H(Ω) is
defined by

(T f )(z) :=

{
( f (z)− f (0))/z, z 6= 0
f ′(0), z = 0

.

It is easily seen that T is a continuous operator on H(Ω). Moreover, the n-th
iterate Tn is given by

(Tn f )(z) :=

{
( f − Sn−1 f )(z)/zn, z 6= 0
an, z = 0

,

where (Sn f )(z) := ∑n
ν=0 aνzν denotes the n-th partial sum of the Taylor expansion

of f about 0. In particular, for |z| < dist(0, ∂Ω) we have

(Tn f )(z) =
∞

∑
ν=0

aν+nzν ,

that is, locally at 0 the Taylor shift acts as backward shift on the Taylor coefficients.
An important feature of the Taylor shift is that the spectrum is easily de-

termined: Setting A∗ = 1/(C∞ \ A) for A ⊂ C∞, the set Ω∗ is compact in the
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complex plane C if and only if Ω is open in C∞ with 0 ∈ Ω. For α ∈ C, we define
γ(α) : {α}∗ → C by

(1.1) γ(α)(z) :=
1

1− αz
(z ∈ C∞ \ {1/α}).

Since γ(α) ∈ H(Ω) is an eigenfunction to the eigenvalue α for all α ∈ Ω∗, the
point spectrum contains Ω∗. Moreover, the corresponding eigenspace is one-
dimensional. On the other hand, a calculation shows that for 1/α ∈ Ω the opera-
tor Sα : H(Ω)→ H(Ω) defined by

(Sαg)(z) =
zg(z)− g(1/α)/α

1− zα
(z ∈ Ω \ {1/α})

(and appropriately extended at 1/α) is the continuous inverse to T− αI and hence
the spectrum and the point spectrum both equal Ω∗.

The Taylor shift may also be considered as an operator on Banach spaces of
functions holomorphic in Ω as e.g. Bergman spaces, that is, subspaces of H(Ω) of
functions which are p-integrable with respect to the two-dimensional Lebesgue
measure. In the case of the open unit disc Ω = D there is an elaborated theory
about invariant subspaces and cyclic vectors for Hardy- and Bergman spaces (see
e.g. [7], cf. also [10]). Since we are interested also – and in particular – in the case
of open sets Ω containing ∞ and in order to avoid difficulties according to local
integrability at ∞, we modify the usual Bergman spaces and consider the surface
measure on the sphere C∞ instead. We denote the normalized surface measure
by m2 and, correspondingly, the normalized arc length measure on the unit circle
T by m1 of briefly m.

For 1 ≤ p < ∞ and Ω ⊂ C∞ open we define the Bergman space Ap(Ω) =
Ap(Ω, m2) as the set of all functions f ∈ H(Ω) which fulfil

‖ f ‖p :=
(∫

Ω
| f |p dm2

)1/p
< ∞ .

Then (Ap(Ω), ‖ · ‖p) is a Banach space. If Ω is open and bounded in C, the above
norm and the classical p-norm with respect to Lebesgue measure are equivalent.

In case 0 ∈ Ω, the Taylor shift turns out to be a continuous operator on
Ap(Ω). For α ∈ (Ω∗)◦ the functions γ(α) belong to Ap(Ω) for all p and it is
clear that γ(α) is an eigenfunction to the eigenvalue α. Again, for 1/α ∈ Ω, the
operator Sα from above, now defined on Ap(Ω), turns out to be the continuous
inverse to T − αI. Moreover, in the case p < 2 the functions γ(α) belong to
Ap(Ω) also for α ∈ ∂Ω∗, which yields that in this case the point spectrum equals
Ω∗. Thus, we obtain:

(i) (Ω∗)◦ ⊂ σ0(T) and (Ω∗)◦ ⊂ σ(T) ⊂ Ω∗ for all p ≥ 1.
(ii) σ0(T) = σ(T) = Ω∗ for 1 ≤ p < 2.

This gives high flexibility in prescribing spectra. In particular, each compact
plane set K appears as spectrum and point spectrum of T on Ap(K∗) for 1 ≤
p < 2. For p ≥ 2 the situation is more delicate. In general γ(α) does not belong to
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Ap(Ω) for α ∈ ∂Ω∗. If, however, Ω is "sufficiently small" near a boundary point
1/α of Ω, it may happen that γ(α) does belong to Ap(Ω). A simple example is
the crescent-shaped region Ω = D \ {z : |z− 1/2| ≤ 1/2}, where γ(1) ∈ A2(Ω).
This opens the possibility to choose Ω in such a way that eigenvalues are placed
at certain points.

In [4], [5] and [23], the behaviour of the Taylor shift with respect to topolog-
ical dynamics was studied. We recall that an operator T on a separable Fréchet
space X is called hypercyclic if T has a dense orbit. This is equivalent to T being
topologically transitive, that is, for any two nonempty open sets U, V ⊂ X the im-
ages Tn(U) meet V infinitely often. Moreover, T is topologically mixing if Tn(U)
meets V for all sufficiently large n. Concerning these and further notions from
topological (linear) dynamics we refer the reader to [2] and [13].

The main result from [4] states that the following are equivalent:

• T is topologically mixing
• T is hypercyclic
• Each component of Ω∗ meets the unit circle T.

The situation changes drastically if we consider Bergman spaces. If T is hyper-
cyclic on Ap(Ω), for some p < 2, then Ω∗ has to be perfect. In [5] it is shown that
T is mixing on Ap(Ω) if Ω ⊃ D is a Jordan domain such that Ω∗ ∩ T contains an
arc.

In Section 2 we study the Taylor shift operator for its metric dynamical prop-
erties. For H(Ω) and in the case of Ap(Ω) with p < 2, the sufficient supply of
eigenvectors γ(α) allows the application of a recent deep result of Bayart and
Matheron (Theorem 1.1 from [3]) which in many respects finishes a line of inves-
tigations concerning relations between the existence of unimodular eigenvectors
and the dynamics of a linear operator.

This is no longer possible for p ≥ 2. In Section 3 we show that the Taylor
shift is topologically mixing on Ap(Ω) for arbitrary p if each component of Ω∗ is
sufficiently large near the unit circle T.

2. METRIC DYNAMICS OF T

In this section, we investigate the Taylor shift on H(Ω) and Ap(Ω) for
p < 2 with respect to its metric dynamical behaviour. We recall that a measure-
preserving transformation T on a probability space (X, Σ, µ) is called weakly mix-
ing (with respect to µ) if for any A, B ∈ Σ

lim
N→∞

1
N

N−1

∑
n=0
|µ(A ∩ T−n(B))− µ(A)µ(B)| = 0
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and it is called strongly mixing (with respect to µ) if for any A, B ∈ Σ

µ(A ∩ T−n(B))→ µ(A)µ(B) (n→ ∞).

For further notions from ergodic theory we refer the reader e.g. to [24]. Consider
now X to be a complex separable Fréchet space. Each operator T which is weakly
mixing with respect to some measure of full support is frequently hypercyclic
(see e.g. [2, Corollary 5.5]) and then also hypercyclic. Moreover, strong mixing
with respect to some measure of full support implies topological mixing.

The operator T is called weakly (resp. strongly) mixing in the Gaussian sense
if it is weakly (resp. strongly) mixing with respect to some Gaussian probability
measure µ having full support. The definition of Gaussian probability measures
and related results can be found in [2] and [3]. For the notion of the cotype of a
Banach space we refer to [1].

Let now T be the Taylor shift on H(Ω) or Ap(Ω), where 1 ≤ p < 2. In order
to treat both cases simultaneously, we write A0(Ω) := H(Ω). Then, for D ⊂ T,

span
⋃

α∈T\D
ker(T − αI) = span

(
γ(Ω∗ ∩T \ D)

)
.

For Λ ⊂ T we say that γ(Λ) is perfectly spanning in Ap(Ω) if the span of γ(Λ \D)
is dense in Ap(Ω) for all countable D ⊂ T. Similarly, we say that γ(Λ) is U0-
perfectly spanning if this holds for all D ∈ U0, where U0 denotes class of sets of
extended uniqueness (see e.g. [16, p. 76]). We recall that all sets of extended
uniqueness have vanishing arc length measure.

Since for 1 ≤ p ≤ 2 the Bergman space Ap(Ω) as closed subspace of
L2(Ω, m2) is of cotype 2, we obtain as an immediate consquence of the Bayart-
Matheoren theorem mentioned in the introduction (Theorem 1.1 from [3])

THEOREM 2.1. Let 0 ∈ Ω ⊂ C∞ be an open set and let T be the Taylor shift on
Ap(Ω), where p ∈ {0} ∪ [1, 2).

(i) If γ(Ω∗ ∩ T) is perfectly spanning in Ap(Ω) then T is weakly mixing in the
Gaussian sense.

(ii) If γ(Ω∗ ∩ T) is U0-perfectly spanning in Ap(Ω) then T is strongly mixing in
the Gaussian sense.

If p ∈ [1, 2) then in both cases the converse implication is true.

We say that a point z ∈ C is a perfect limit point of A ⊂ C if U ∩ A is un-
countable for each neighbourhood U of z, that is, if z is a limit point of A ∩U \ D
for each countable set D. Similarly, we say that z is a U0-perfect limit point if z is
a limit point of A ∩U \ D for each neighbourhood U of z and each D ∈ U0. If
A ⊂ T has locally positive arc length measure at z then z is a U0-perfect limit
point. Applying an appropriate version of Runge’s theorem which can be found
e.g. in [17, Theorem 10.2] we obtain from Theorem 2.1:

COROLLARY 2.2. Let 0 ∈ Ω ⊂ C∞ be an open set and let T be the Taylor shift on
H(Ω).
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(i) If each component of Ω∗ contains a perfect limit point of Ω∗ ∩ T, then T is
weakly mixing in the Gaussian sense.

(ii) If each component of Ω∗ contains a U0-perfect limit point of Ω∗ ∩ T, then T is
strongly mixing in the Gaussian sense.

REMARK 2.3. By separating singularities it is easily seen from [23, Corollary
1] that Ω∗ necessarily has to be perfect if the Taylor shift on H(Ω) is weakly
mixing (or merely frequently hypercyclic). Note that Ω∗ ∩ T not necessarily has
to be perfect: If B is some closed arc on T symmetric to the real axis and

Ω = C \
(

B ∪ (−∞,−1] ∪ [1, ∞)
)

then Ω∗ = B ∪ [−1, 1] satisfies the assumption of Corollary 2.2.2, hence T is
strongly mixing on H(Ω).

We turn to Bergman spaces. Theorem 2.1 shows that the question whether
T is (strongly or weakly) mixing completely reduces to a question about mean
approximation by rational functions with simple poles in appropriate subsets of
T. The following result on separation of singularities implies that the general
question may be reduced to special cases.

PROPOSITION 2.4. Let p ≥ 1 and let Ω1, Ω2 ⊂ C∞ be open sets in C∞ with
Ω1 ∪Ω2 = C∞. Then Ap(Ω1 ∩Ω2) = Ap(Ω1)⊕ Ap(Ω2).

Proof. It is known that, by separation of singularities of holomorphic func-
tions,

H(Ω1 ∩Ω2) = H(Ω1)⊕ H(Ω2)

as topological direct sum. Since convergence in Ap(Ω) implies convergence in
H(Ω) (see e.g. [9, Chapter 1, Theorem 1]), it suffices to show that for f ∈ Ap(Ω1 ∩
Ω2) decomposed as f = f1 + f2 ∈ H(Ω1) ⊕ H(Ω2) we have f j ∈ Ap(Ωj) for
j = 1, 2.

Let f ∈ Ap(Ω1 ∩Ω2) and f = f1 + f2 with f j ∈ H(Ωj). Since the boundary
of Ω1 ∩Ω2 is the union of the (compact) boundaries ∂Ωj ⊂ Ω3−j, for j = 1, 2, we
can find compact disjoint neighbourhoods Uj ⊂ Ω3−j of ∂Ωj. Then∫

Ωj

| f j|pdm2 =
∫

Ωj\Uj

| f j|pdm2 +
∫

Ωj∩Uj

| f − f3−j|pdm2 < ∞.

This yields f j ∈ Ap(Ωj) for j = 1, 2.

An immediate consequence is the fact that hypercyclicity of T on Ap(Ω),
for some 1 ≤ p < 2, implies that Ω∗ is perfect: Suppose that ζ is an isolated point
of Ω∗. Then we have

Ap(Ω) = Ap(Ω ∪ {1/ζ})⊕ Ap(C∞ \ {1/ζ}).

By [13, Proposition 2.25] it follows that T is also hypercyclic on Ap(C∞ \ {1/ζ}).
Since Ap(C∞ \ {1/ζ}) reduces to the span of γ(ζ) and is thus one-dimensional
we get a contradiction.
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In order to be able to reduce the case of open sets Ω containing ∞ to the case
of bounded open sets in C we recall

PROPOSITION 2.5. Let X a Fréchet space and let L be complemented in X. If
X = L⊕M and if A ⊂ L and B ⊂ M with span(A + B) dense in X then span(A) is
dense in L.

Proof. Let a ∈ L. Then a sequence (xn) in span(A + B) exists with xn → a
in X as n tends to ∞. We write xn = an + bn with an ∈ span A and bn ∈ span B.
Since a belongs to L and since the projection of X to L along M is continuous (see
e.g. [21, Theorem 5.16]), the sequence (an) converges to a.

REMARK 2.6. Let Ω be open with ∞ ∈ Ω and ρ > maxz∈C∞\Ω |z|. If we put
Ωρ := Ω ∩ ρD then

Ap(Ωρ) = Ap(Ω)⊕ Ap(ρD)

and γ(ρ−1D) ⊂ Ap(ρD) for all p ≥ 1. If B ⊂ Ap(Ω) is so that B + γ(ρ−1D)
densely spans Ap(Ωρ) then B has dense span in Ap(Ω) by Proposition 2.4.

For K ⊂ C compact, a set Λ ⊂ K is called a K-uniqueness set if every contin-
uous function on K which is holomorphic in the interior of K and vanishes on Λ
vanishes identically. Obviously, if K is nowhere dense then Λ is a K-uniqueness
set if and only if Λ is dense in K. More generally, it is easily seen that Λ ⊂ K is a
K-uniqueness set if and only if K \ K◦ ⊂ Λ and for every component C of K◦ the
set Λ∩ C is a uniqueness set for C.

With that notion, we have the following result on rational approximation.
For the case p = 1 and Lebesgue measure instead of surface measure the result is
due to Bers ([6]).

THEOREM 2.7. Let 1 ≤ p < 2 and 0 ∈ Ω ⊂ C∞ be an open set which is either
bounded in C or contains ∞. Moreover, suppose Λ to be a subset of Ω∗.

(i) If Λ is a Ω∗-uniqueness set then the span of γ(Λ) is dense in Ap(Ω).
(ii) If m2(Ω

∗) = 0 then the span of γ(Λ) is dense in Ap(Ω) if and only if Λ is
dense in Ω∗.

Proof. 1. We first assume that Ω is bounded in C. Let ` ∈ Ap(Ω)′ with
`(γ(α)) = 0 for all α ∈ Λ. Since Ap(Ω) is a subspace of Lp(Ω) the Hahn-Banach
theorem yields that ` can be extended to a continuous linear functional on Lp(Ω).
Thus, there exists a function g ∈ Lq(Ω), where q is the conjugated exponent, such
that

`( f ) =
∫

Ω
f g dm2

for all f ∈ Ap(Ω). For the measure 1Ωgdm2 ∈ M(Ω) the Cauchy transform

(Vg)(α) :=
∫

Ω

g(ζ)
1− ζα

dm2(ζ) =
1
α

∫
Ω

g(ζ)
1/α− ζ

dm2(ζ)
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of 1Ωgdm2 is holomorphic in the interior of Ω∗ and continuous in C as the con-
volution of w 7→ 1/w ∈ Ap(C∞ \ {0}) and the function 1Ωg ∈ Lq(C). Since

(Vg)(α) = `(γ(α)) = 0

for all α ∈ Λ and since Λ is a Ω∗-uniqueness set we have that Vg|Ω∗ = 0 and thus
`(γ(α)) = 0 for all α ∈ Ω∗. So ` vanishes on the set of rational functions with
simple poles in C \Ω. According to (the proof of) [14, Theorem 1], the set of these
functions is dense in Ap(Ω). This yields that ` = 0 and then the Hahn-Banach
theorem implies the assertion.

Now, let Ω be open with ∞ ∈ Ω and Ωρ as in Remark 2.6. Then Ω∗ρ = Ω∗ ∪
ρ−1D. Since Λ∪ ρ−1D is a Ω∗ρ-uniqueness set, by the previous considerations we
have that the span of γ(Λ ∪ ρ−1D) is dense in Ap(Ωρ). By Remark 2.6 the span
of γ(Λ) is dense in Ap(Ω).

2. It is easily seen that in case m2(Ω
∗) = 0 the denseness of Λ in Ω∗ is

necessary for γ(Λ) to be densely spanning in Ap(Ω). Conversely, since Ω∗ is
nowhere dense, denseness of Λ in Ω∗ implies Ω∗-uniqueness.

If Ω∗ has interior points then Ω∗-uniqueness of Λ is in general not necessary
for γ(Λ) to be (even perfectly) spanning in Ap(Ω):

EXAMPLE 2.8. Let 0 < δ < 1 and Eδ := (1 + iCδ), where Cδ is the convex
hull of the closed curve bounded by {t + iϕ(t) : −δ ≤ t ≤ δ} with

ϕ(t) := e−1/|t| + 1−
√

1− t2 (−δ ≤ t ≤ δ)

(where e−∞ := 0) and the horizontal line {t + iϕ(δ) : −δ ≤ t ≤ δ}. Since each
dense subset of T is a D∗-uniqueness set, γ(T) is U0-perfectly spanning in Ap(D)
for p < 2. For the crescent-shaped domain Ω := D \ Eδ, however, T is no Ω∗-
uniquensess set. On the other hand, the domain Ω is so "sharp" near the point 1
that the polynomials form a dense subspace of A2(Ω) (see Theorem 12.1 in [18];
cf. also [11, p. 29]) and thus of Ap(Ω) for p < 2. In particular, Ap(D) is dense
in Ap(Ω). But then γ(T) is also U0-perfectly spanning in Ap(Ω) for p < 2 and,
according to Theorem 2.1, the Taylor shift on Ap(Ω) is strongly mixing in the
Gaussian sense.

From the second part of Theorem 2.7 we obtain a quite complete character-
ization of the metric dynamics of T for the case of open sets Ω with m2(Ω

∗) = 0.
We recall that for any perfect set A ⊂ T each point in A is a perfect limit point. A
closed set A ⊂ T is said to be U0-perfect if U ∩ A 6∈ U0 for all open sets U that meet
A. In particular, closed sets A ⊂ T which have locally positive arc length measure
are U0-perfect. For any U0-perfect set A ⊂ T each point in A is a U0-perfect limit
point.

THEOREM 2.9. Let Ω ⊂ C∞ be open with 0, ∞ ∈ Ω and m2(Ω
∗) = 0. Further-

more, let 1 ≤ p < 2 and T be the Taylor shift on Ap(Ω).
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(i) T is weakly mixing in the Gaussian sense if and only if Ω∗ is a perfect subset of
T,

(ii) T is strongly mixing in the Gaussian sense if and only if Ω∗ is a U0-perfect
subset of T.

Proof. If Ω∗ ⊂ T is perfect, then Ω∗ \D is dense in Ω∗ for all countable sets
D. Theorem 2.1 and Theorem 2.7 show that T is weakly mixing in the Gaussian
sense. In the same way, Theorem 2.1 and Theorem 2.7 show that T is strongly
mixing in the Gaussian sense if Ω∗ ⊂ T is U0-perfect.

On the other hand, as noted above, already hypercylicity of T requires per-
fectness of Ω∗. Since m2(Ω

∗) = 0, Theorem 2.1 and Theorem 2.7 show that the
set Ω∗ has to be a subset of T. Moreover,

Ω∗ 3 α→ γ(α) ∈ Ap(Ω)

defines a continuous eigenvector field for T. The same arguments as in Example 2
of [3] show that U0-perfectness of Ω∗ ∩T is necessary for T to be strongly mixing
on Ap(Ω) for any 1 ≤ p < 2.

EXAMPLE 2.10. Theorem 2.9 implies that for each set B ⊂ T which has lo-
cally positive arc length measure (as e.g. a nontrivial arc) the Taylor shift T on
Ap(C∞ \ B) is strongly mixing in the Gaussian sense for p < 2. If B is perfect but
not U0-perfect then T is weakly mixing but not strongly mixing in the Gaussian
sense.

For the case that Ω∗ has interior points we can show

THEOREM 2.11. Let 0 ∈ Ω ⊂ C∞ be an open set which is either bounded in C
or contains ∞. If each component K of Ω∗ is the closure of a simply connected domain G
such that the harmonic measure ω(·, K ∩ T, G) is positive or G meets T then the Taylor
shift on Ap(Ω) is strongly mixing in the Gaussian sense for all p < 2.

Proof. From the two-constant-theorem (see e.g. [20]) it follows that for each
domain G with non polar boundary sets A ⊂ ∂G of positive harmonic measure
ω(·, A, G) are uniqueness sets for G. If K is a component of Ω∗ then, according
to our assumptions, the local F. and M. Riesz theorem (see [12, p. 415]) shows
that m(K ∩T) is positive. Since each U0-set D ⊂ Ω∗ ∩T has vanishing arc length
measure and, again by the local F. and M. Riesz theorem, also vanishing harmonic
measure, (Ω∗ ∩ T) \ D is a Ω∗-uniqueness set for all D ∈ U0. Hence, according
to Theorem 2.1 and Theorem 2.7 the Taylor shift on Ap(Ω) is strongly mixing in
the Gaussian sense for all p < 2.

REMARK 2.12. Let Ω with 0 ∈ Ω be the exterior of a rectifiable Jordan curve
Γ. Then the interior G = (Ω∗)◦ of 1/Γ is a Jordan domain with rectifiable bound-
ary and, according to the (global) F. and M. Riesz theorem (see e.g. [12, p. 202]),
the harmonic measure of a set A ⊂ ∂G is positive if and only if the linear measure
is positive. For A ⊂ T this in turn is equivalent to A having positive arc length
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measure. Hence, if m(Ω∗ ∩ T) > 0, then T is strongly mixing in the Gaussian
sense for all p < 2.

Let λ2 denote the two-dimensional Lebesgue measure and let

Dq(G) := {h ∈ H(G) :
∫

G
|h′|q dλ2 < ∞}

be the Dirichlet space of order q with respect to G. In a similar way as in the
proof of Theorem 1 in [19], by applying Theorem 3, Chapter II, Section 4, from
[22], it can be shown that for Cauchy transforms Vg of functions g ∈ Lq(Ω) as
considered in the proof of Theorem 2.7 the restrictions Vg|G belong to Dq(G) and
thus in particular to D2(G). It is known that for the Dirichlet space D2(D) perfect
uniqueness sets of vanishing arc length measure exist (see [10, Corollary 4.3.4]).
By conformal invariance (cf. [10, Therorem 1.4.1]), the rectifiable Jordan curve Γ
can be chosen in such a way that m(Ω∗ ∩ T) = 0 and that T is weakly mixing in
the Gaussian sense for all p < 2.

EXAMPLE 2.13. Let C ⊂ T be a closed set and consider Γ to be a rectifiable
Jordan curve in C \ D with Γ ∩ T = C and so that the exterior Ω of Γ contains
0. If C has positive arc length measure then Remark 2.12 shows that the Taylor
shift T on Ap(Ω) is strongly mixing in the Gaussian sense for p < 2. Note that
C may be chosen to be a totally disconnected set and that C may have isolated
points. Moreover, according to the proof of [10, Corollary 4.3.4], for an appropri-
ate countable union C of circular Cantor middle-third sets the Taylor shift weakly
mixing in the Gaussian sense for p < 2.

3. TOPOLOGICAL DYNAMICS OF T

If Ω is an open set such that no point of T is an interior point of Ω and if
p ≥ 2, the Taylor shift T on Ap(Ω) may have no unimodular eigenvalues. This
is e.g. the case for Ω = D. Since A2(Ω) is of cotype 2, Theorem 2.1 shows that
weak mixing in the Gaussian sense is excluded. We recall that an operator T on
a Fréchet space X is called frequently hypercyclic if the orbit of some point x meets
each nonempty open set with positive lower density. Each operator that is weakly
mixing with respect to some measure of full support is frequently hypercyclic.

The space A2(D) is isometrically isomorphic to the weighted sequence space
`2(1/(n + 1)) and the Taylor shift is conjugated to the backward shift on the
space `2(1/(n + 1)) (see [13, Example 4.4.(b)]). As a consequence, the Taylor shift
is topologically mixing but not frequently hypercyclic on A2(D) ([13, Example
9.18]). It turns out that a similar result holds for the Taylor shift on more general
domains Ω and for arbitrary p.

THEOREM 3.1. Let 1 ≤ p < ∞ and 0 ∈ Ω ⊂ C∞ be a domain which is either
bounded in C or contains ∞. If each component K of Ω∗ is the closure of a simply
connected domain and contains a rectifiable Jordan curve Γ such that the linear measure of
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Γ ∩T is positive, then the Taylor shift on Ap(Ω) is topologically mixing. If, in addition,
D ⊂ Ω then T is not frequently hypercyclic for any p ≥ 2.

REMARK 3.2. Theorem 3.1 extends a corresponding result in [5], where Ω
is a Caratheodory domain that contains a (nontrivial) subarc of T. It shows, in
particular, that in the situation of Example 2.13 the Taylor shift on Ap(Ω) is topo-
logically mixing for all p ≥ 1 and not frequently hypercyclic for any p ≥ 2.

According to Example 2.10, for each (nontrivial) arc B ⊂ T the Taylor shift
on Ap(C∞ \ B) is topologically mixing for p < 2. We do not know if this is still
the case for p ≥ 2.

The remaining part of the section is devoted to the proof of Theorem 3.1.
Our aim is to apply a version of Kitai’s Criterion (see [13, Remark 3.13]).

Let E ⊂ C be compact and let M(E) denote the set of complex measures
on the Borel sets of C with support in E. It turns out that the Cauchy transforms
of measures µ ∈ M(Ω∗) are of particular interest for analysing the Taylor shift
on Ap(Ω). For µ ∈ M(E) the Cauchy transform Cµ ∈ H(E∗) of µ is defined (in
terms of vector valued integration) by

Cµ :=
∫

γ(ζ) dµ(ζ) =
∫ 1

1− ζ · dµ(ζ)

We write |µ| for the total variation of the measure µ and set

Mp(Ω) = {µ ∈ M(Ω∗) :
∫
|γ(ζ)| d|µ|(ζ) ∈ Lp(Ω)}

as well as

Cp(Ω) = {Cµ : µ ∈ Mp(Ω)}.

For f ∈ Cp(Ω) we denote by C−1( f ) = {µ ∈ Mp(Ω) : Cµ = f } the set of repre-
senting measures for f . Note that for Cp(Ω) ⊂ Ap(Ω) since Cauchy transforms
of measures µ ∈ Mp(Ω) are holomorphic in Ω and

|Cµ| ≤
∫
|γ(ζ)| d|µ|(ζ) ∈ Lp(Ω).

LEMMA 3.3. Let 1 ≤ p < ∞ and 0 ∈ Ω ⊂ C∞ be an open set. Then T(Cp(Ω)) ⊂
Cp(Ω) and for R : Mp(Ω)→Mp(Ω), defined by d(Rµ)(ζ) = ζ dµ(ζ), the diagram

Mp(Ω)
R //

C
��

Mp(Ω)

C
��

Cp(Ω)
T
// Cp(Ω)

commutes.
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Proof. Let 1 ≤ p < ∞ and µ ∈ Mp(Ω). We first show that R is a self map.
For c := maxz∈∂Ω∗ |z| we obtain∫

|γ(ζ)|d|Rµ|(ζ) =
∫
|γ(ζ)ζ|d|µ|(ζ) ≤ c

∫
|γ(ζ)|d|µ|(ζ).

It follows that Rµ ∈ Mp(Ω). Now, let f ∈ Cp(Ω) with µ ∈ C−1( f ). Since we can
interchange integration and T (cf. [21, Exercise 3.24]), we obtain

T f =
∫

Tγ(ζ)dµ(ζ) =
∫

ζγ(ζ)dµ(ζ) =
∫

ζ

1− ζ·dµ(ζ),

i.e. T f = CRµ. Since R is a self map onMp(Ω), it follows that T f ∈ Cp(∂Ω∗).

Inductively, from Lemma 3.3 we obtain

(3.1) Tn f =
∫

ζnγ(ζ)dµ(ζ)

for f ∈ Cp(Ω), µ ∈ C−1( f ) and n ∈ N. In view of Kitai’s criterion, our aim is to
find measures µ such that Tn(Cµ) converges to 0 in Ap(Ω). We shall see that this
is the case if µ ∈ Mp(Ω) is supported on Ω∗ ∩ T and a Rajchman measure. We
recall that a Borel measure ν supported on T is called a Rajchman measure if the
Fourier-Stieltjes coefficients ν̂(k) =

∫
ζk dν(ζ) tend to 0 as k tends to ±∞ (see e.g.

[16]).
Again according to Kitai’s criterion, we also need a kind of right inverse of

T: If µ ∈ Mp(Ω) is a measure with support in T we define

(3.2) Snµ :=
∫

γ(ζ)

ζn dµ(ζ) =
∫ dµ(ζ)

ζn(1− ζ·)

for all n ∈ N. As in the proof of Lemma 3.3 it is seen that Snµ ∈ Cp(Ω).

LEMMA 3.4. Let 1 ≤ p < ∞ and 0 ∈ Ω ⊂ C∞ be an open set which is either
bounded in C or contains ∞. Furthermore, let T be the Taylor shift operator on Ap(Ω).
If f ∈ Cp(Ω) such that f is represented by a Rajchman measure µ f ∈ C−1( f ) supported
on Ω∗ ∩T then Tn f → 0 and Snµ f → 0 in Ap(Ω) as n→ ∞.

Proof. Let f ∈ Cp(Ω) and µ f ∈ C−1( f ) such that µ f is a Rajchman measure
supported on B := Ω∗ ∩T. We fix z ∈ Ω. By (3.1) we have

Tn f (z) =
∫

∂Ω∗

ζn

1− ζz
dµ f (ζ) =

∫
B

ζn

1− ζz
dµ f (ζ)

for all n ∈ N. Because µ f ∈ Mp(Ω) is supported on B ⊂ T, the function γ(z)
belongs to L1(T, |µ f |). Since µ f is a Rajchman measure and µ f ,z with

dµ f ,z := γ(z) dµ f
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is absolutely continuous with respect to µ f , [16, Lemma 4, p. 77] yields that µ f ,z
is a Rajchman measure as well. Thus, we have

Tn f (z) =
∫

ζnγ(z)(ζ)dµ f (ζ) =
∫

ζndµ f ,z(ζ) = µ̂ f ,z(−n)→ 0

and

Snµ f (z) =
∫

ζ−nγ(z)(ζ)dµ f (ζ) =
∫

ζ−ndµ f ,z(ζ) = µ̂ f ,z(n)→ 0

as n tends to ∞. Furthermore, for all n ∈ N we have

|Tn f (z)| ≤
∫
|γ(ζ)| d|µ f |(ζ) and |Snµ f (z)| ≤

∫
|γ(ζ)| d|µ f |(ζ)

where
∫

B |γ(ζ)| d|µ f |(ζ) is p-integrable on Ω by assumption. Lebesgue’s theorem
of dominated convergence yields that ‖Tn f ‖p → 0 and ‖Snµ f ‖p → 0 as n tends
to ∞.

As noted in the introduction, for p ≥ 2 and ζ ∈ ∂Ω∗ the functions γ(ζ) are
in general not p-integrable. We introduce appropriate means of the γ(ζ) which
turn out to be integrable for all p.

REMARK 3.5. It is easily seen (see e.g. [15, Theorem 1.7]) that∫
T

dm(α)

|1− αz| = O
(

log
1

1− |z|

)
(|z| → 1−).

Since, for all p ≥ 1,∫
D

∣∣∣∣log
1

1− |z|

∣∣∣∣p dm2(z) ≤
1
π

∫ 1

0

∣∣∣∣log
1

1− r

∣∣∣∣p dr < ∞,

by symmetry we obtain that∫
|γ(α)|dm(α) ∈ Lp(C∞ \T, m2).

For a Borel set B ⊂ T we define dmB = 1Bdm and

(3.3) fB := CmB =
∫

γ(α) dmB(α) =
∫

B

dm(α)

1− α · ∈ H(B∗).

Let now Ω ⊂ C∞ be an open set and Ω∗ ∩ T 6= ∅. Then, for all Borel sets
B ⊂ Ω∗ ∩T and for all 1 ≤ p < ∞∫

|γ(α)| dmB(α) ∈ Lp(Ω, m2),

which yields that mB is a measure in Mp(Ω) supported on B and hence fB ∈
Cp(Ω). Since 1B ∈ L1(T) and the arc length measure is a Rajchman measure,
Theorem [16, Lemma 4, p. 77] yields that mB is a Rajchman measure as well.

The following result shows that under the conditions of Theorem 3.1 the
functions fB densely span Ap(Ω).
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THEOREM 3.6. Let 1 ≤ p < ∞ and 0 ∈ Ω ⊂ C∞ be a domain which is either
bounded in C or contains ∞. If each component K of Ω∗ is the closure of a simply
connected domain and contains a rectifiable Jordan curve Γ such that the linear measure
of Γ ∩T is positive, then the span of { fB : B ⊂ Ω∗ ∩T} is dense in Ap(Ω).

Proof. We first assume that Ω is bounded in C and fix ` ∈ Ap(Ω)′ with
`( fB) = 0 for all Borel sets B ⊂ Ω∗ ∩ T. Again, according to the Hahn-Banach
theorem there exists a function g ∈ Lq(Ω), where q is the conjugated exponent,
such that

`( f ) =
∫

Ω
f g dm2

for all f ∈ Ap(Ω), and for 1Ωgdm2 ∈ M(Ω) the Cauchy transform

(Vg)(α) =
∫

Ω

g(ζ)
1− ζα

dm2(ζ)

of 1Ωgdm2 is holomorphic in the interior of Ω∗. However, since q ≤ 2 for p ≥ 2,
it is no longer guaranteed that the Cauchy integral is defined and continuous on
C.

Since
∫

Ω∗∩T |γ(α)| dm(α) ∈ Lp(Ω), Hölder’s inequality yields∫
Ω

∫
Ω∗∩T

| g(ζ)
1− ζα

| dm(α) dm2(ζ) ≤ ‖g‖q · ‖
∫

Ω∗∩T
|γ(α)| dm(α)‖p < ∞.

Hence the maximal Cauchy transform∫
Ω

|g(ζ)|
|1− ζα|dm2(ζ)

is finite for m-almost all on α ∈ Ω∗ ∩ T and Vg exists m-almost everywhere on
Ω∗ ∩ T. Moreover, for all Borel sets B ⊂ Ω∗ ∩ T we may apply Fubini’s theorem
to get

0 = `( fB) =
∫

Ω

∫
B

dm(α)

1− ζα
g(ζ) dm2(ζ) =

∫
B

Vg(α) dm(α).

This implies that Vg = 0 m-almost everywhere on Ω∗ ∩T.
Let G be a bounded simply connected domain in C and let Dq(G) denote

the the Dirchlet space of order q defined as in Remark 2.12. Fixing a point β ∈ G,
we equip Dq(G) with the (complete) norm

‖h‖q = |h(β)|+
( ∫

G
|h′|q dλ2

)1/q
.

If ϕ is the conformal mapping from D to G with ϕ(0) = β and ϕ′(0) > 0 then

h 7→ (h ◦ ϕ)(ϕ′)2−q

defines an isomorphism between Dq(G) and the Dirichlet space Dq := Dq(D)
on the unit disc. It is known that Dq ⊂ Hq, where Hq denotes the Hardy space
of order q (see e.g. [7, p. 88]). In particular, for h ∈ Dq(G) ⊂ D1(G) we have
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(h ◦ ϕ)ϕ′ ∈ H1, which in turn implies that h belongs to the Hardy-Smirnov space
E1(G) (see [8, Corollary to Theorem 10.1]).

Let now K be a component of Ω∗ and G the interior of Γ. Then the harmonic
measure ω(·, K ∩ T, G) is positive or G meets T. In a similar way as in the proof
of Theorem 1 in [19], by applying Theorem 3, Chapter II, Section 4, from [22] it
can be shown that Vg|G belongs to Dq(G). Since Vg = 0 m-almost everywhere
on Ω∗ ∩ T, in the case of positive harmonic measure ω(·, K ∩ T, G) the local F.
and M. Riesz theorem implies that Vg vanishes on a subset of K ∩ T of positive
harmonic measure (cf. Remark 2.12).

Since Γ := ∂G is a rectifiable Jordan curve, the set of cone points of Γ has
full linear measure (see [12, Corollary 1.3 and p. 207] or [8, Section 3.5]). Hence
m-almost every point in K ∩T is a cone point. it With similar arguments as in the
proof of Theorem 3.2.4 in [10] it can be shown that the non-tangential limit of Vg
at α coincides with (Vg)(α) and hence with 0 at m-almost all α ∈ K ∩T. From [8,
Theorem 10.3] we obtain that Vg|G = 0. As K was an arbitrary component of Ω∗,
it follows that Vg|(Ω∗)◦ = 0 and then

`(γ(α)) = (Vg)(α) = 0

for all α ∈ (Ω∗)◦. Since, by assumption, Ω is a domain, it follows that the inner
boundary of Ω is empty, which allows to apply [14, Corollary p. 162] showing
that the rational functions with (simple) poles in C \Ω are dense in Ap(Ω). This
implies that ` = 0 and thus the denseness of span{ fB : B ⊂ Ω∗ ∩T} in Ap(Ω).

Along the same lines, we get in case of Ω containing ∞ and Ωρ := Ω ∩ ρD
that the span of { fB : B ⊂ Ω∗ ∩ T} ∪ γ(ρ−1D) is dense in Ap(Ωρ). According to
Remark 2.6, the span of { fB : B ⊂ Ω∗ ∩T} is dense in Ap(Ω).

Proof of Theorem 3.1. By Theorem 3.6, the span L of { fB : B ⊂ Ω∗ ∩ T} is
dense in Ap(Ω). Furthermore, for f = ∑B λB fB ∈ L let (Snµ f )n∈N be the se-
quence defined in (3.2) with µ f = ∑B λBmB . Then Lemma 3.4 yields that ‖Tn f ‖p
and ‖Snµ f ‖p converge to 0 as n → ∞. Hence, applying Lemma 3.3 and inter-
changing integration and Tn we obtain for n ∈ N

TnSnµ f = Tn
(∫

γ(ζ)ζ−n dm(ζ)

)
=
∫

Tnγ(ζ)ζ−n dm(ζ) = f .

The Kitai criterion in the version [13, Exercise 3.1.1 or Remark 3.13] yields the
assertion.

Finally, the denseness of the span of { fB : B ⊂ Ω∗ ∩ T} implies that in the
case D ⊂ Ω and p ≥ 2 the space Ap(Ω) is (continuously and) densely embed-
ded in A2(D). Since the Taylor shift is not frequently hypercyclic on A2(D) ([13,
Example 9.18]) it is also not frequently hypercyclic on Ap(Ω).
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