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Abstract. It is proved that there are large vector spaces of functions
in the disc algebra for which every nonzero member satisfies that, for
many small subsets E of the unit circle T, the restrictions to T of the
partial sums of its Taylor series at the origin approximate any prescribed
function on E. Moreover, it is shown that such sets necessarily have to
be small in terms of porosity.
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1. Introduction, notation and known results

Let T denote the unit circle {z ∈ C : |z| = 1} = {eit : t ∈ [0, 2π]} in the
complex plane C, and let C(E) be the Banach space of continuous functions
E → C endowed with the maximum norm ‖f‖∞ = supE |f |, where E is
a compact space. The existence of functions f ∈ C(T) whose Fourier series∑∞
k=−∞ f̂(k)eikt diverge at a point x0 = eit0 is known from Du Bois-Reymond

(1873) (see e.g. [15, pp. 67–73]). One can even get unbounded divergence, that

is, the sequence {Sn(f, t0) :=
∑n
k=−n f̂(k)eikt0}n≥1 of partial Fourier sums is

unbounded. This property is topologically generic: the functions f satisfying
it form a residual subset of C(T) (see more in [12]). It is well known that, if
E ⊂ T, then the set FE := {f ∈ C(T) : {Sn(f, t)}n≥1 is unbounded for each
eit ∈ E} 6= ∅ if and only if E has Lebesgue measure zero (see [8, 13]).

We will need some terminology from lineability theory (see [1] and re-
ferences in it). Assume that A is a subset of a vector space X. Then A is
called lineable if there is an infinite-dimensional vector space M such that
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M \ {0} ⊂ A. If, in addition, X is a topological vector space, we say that
A is dense-lineable (spaceable, resp.) provided that there exists a dense (a
closed infinite-dimensional, resp.) vector subspace M with M \ {0} ⊂ A. The
set A is called maximal dense-lineable if M \ {0} ⊂ A for some dense vector
subspace M with dim(M) = dim(X).

Bayart [2, 3] has proved that if E ⊂ T has Lebesgue measure zero, the
family FE is dense-lineable and spaceable. In 2010, the third author showed
in [16] that, for small subsets E of T, the divergence of the Fourier series of a
function f ∈ C(T) may be “maximal”, in the sense that the partial sums are
not only unbounded but also present universal properties. In fact, he proved
that topological genericity is kept. The corresponding algebraic genericity
was obtained by the first author in 2012, see [6]. To be more precise, the
main results of [16] and [6] can be stated as in Theorem 1.1 below, but let us
first save some notation.

Assume that E ⊂ T. Let us consider the space CE of all functions
E → C endowed with the topology of the pointwise convergence. Assume
that E is countable. Then CE is a (separable) Fréchet space, i.e. a metrizable
complete locally convex topological vector space. We define UpE as the set of
continuous functions whose Fourier sums are pointwise universal on E, that
is,

UpE := {f ∈ C(T) : {Sn(f, ·)|E}n≥1 is dense in CE} ⊂ FE .
Next, let E ⊂ T be a compact set and UuE be the family of continuous
functions on T having Fourier series which are uniformly universal on C(E),
that is

UuE := {f ∈ C(T) : {Sn(f, ·)|E}n≥1 is dense in (C(E), ‖ · ‖∞)}.

Define the set

UK := {f ∈ C(T) : there exists a residual subset Ef of K(T)

with f ∈ UuE for all E ∈ Ef},

where K(S) denotes the (complete) metric space of all nonempty compact
subsets of S endowed with the Hausdorff metric and S is a compact metric
space (see [17]). Under this notation, we have the following result, see [6, 16].

Theorem 1.1. (a) For each countable set E ⊂ T the set UpE is residual,
maximal dense-lineable and spaceable in C(T).

(b) The set UK is residual, maximal dense-lineable and spaceable in C(T).

Let D and D denote, respectively, the open unit disc and its closure,
so that D = D ∪ T. Consider the disc algebra A(D) consisting of those con-
tinuous functions D → C that are holomorphic in the open unit disc D;
see e.g. [11, Chap. 6]. Then A(D) becomes a Banach space under the norm
‖f‖ = max{|f(z)| : z ∈ D}. It is well known that a function f ∈ C(T) can be

extended to a function of A(D) if and only if f̂(−k) = 0 (k ≥ 1). In this case,
the Fourier series of f is the restriction to T of the Taylor series of f at the

origin, so that f̂(k) = f (k)(0)/k! for k ≥ 0. Hence A(D) can be considered
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as a (small) closed subspace of C(T) (recall that, by the maximum modulus
principle, ‖f‖ = maxT |f | = ‖f |T‖∞ for every f ∈ A(D)). For E ⊂ T we set

AUpE := {f ∈ A(D) : {Sn(f, ·)|E}n≥1 is dense in CE} (E countable)

AUuE := {f ∈ A(D) : {Sn(f, ·)|E}n≥1 is dense in C(E)} (E compact)

and moreover we define

AUK := {f ∈ A(D) : there exists a residual subset Ef of K(T)

such that f ∈ AUuE for all E ∈ Ef}.

Of course, AUpE ⊂ UpE , AUuE ⊂ UuE and AUK ⊂ UK.
Herzog and Kunstmann [10, Theorem 1] have shown that the topological

genericity of FE given in Theorem 1.1(a) has its counterpart in the disc
algebra:

Theorem 1.2. If E ⊂ T is countable then the set AUpE is residual in A(D).

Our first aim is to establish an A(D)-analogue of Theorem 1.1 and to comple-
ment Theorem 1.2 so as to show that the property established in the latter
theorem is generic not only in a topological sense but even in an algebraic
sense. In Section 3 we turn to the question which compact sets E have the
property that AUuE is nonempty. In particular, it is shown that a strong
form of porosity turns out to be necessary.

2. Subspaces of maximally divergent A(D)-Taylor series on T
We start with some necessary background. Let X and Y be two Hausdorff

topological spaces and Tn : X → Y (n ∈ N := {1, 2, ...}) be a sequence
of continuous mappings. Then (Tn) is said to be universal provided that
there exists an element x0 ∈ X, called universal for (Tn), such that the orbit
{Tnx0 : n ∈ N} is dense in Y . We set U((Tn)) := {x ∈ X : x is universal for
(Tn)}. Then (Tn) is said to be densely universal if U((Tn)) is dense in X, and
hereditarily densely universal if (Tnk

) is densely universal for every strictly
increasing sequence (nk) ⊂ N.

Theorem 2.1. ([9, Chap. 10]) Let X, Y be separable Fréchet spaces such that
X supports a continuous norm, and let Tn : X → Y be continuous linear
mappings. Suppose that the sequence (Tn) is hereditarily densely universal
and that there exists a closed infinite-dimensional vector subspace M of X
such that the sequence (Tnx)n≥1 converges in Y for every x ∈ M . Then the
set U((Tn)) is spaceable.

Remark 2.2. We fix a (countable) set E = {eitj : j ∈ N} ⊂ T and consider
the sequence of linear mappings Tn : f ∈ A(D) 7→ Sn(f, ·)|E ∈ CE (n ≥ 1).
They are continuous because |Tnf(ξ)| ≤ (n+1)‖f‖∞ (ξ ∈ E), this inequality
being true due to Cauchy’s inequalities |f (j)(0)/j!| ≤ ‖f‖∞ (j ≥ 0). We
make use of Theorem 1.2, but in a stronger form. The proof in [10] depends
ultimately on the fact that Sn(Rn, 1) −→∞ as n→∞, where the Rn’s are
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the so-called Landau extremal functions. This implies that the sequence (Tn)
is hereditarily densely universal.

The following criterion for discovering dense-lineability from mere line-
ability can be found in [1, Chap. 7].

Theorem 2.3. Assume that X is a metrizable separable topological vector
space. Let α be an infinite cardinal number. Suppose that A,B ⊂ X are
two subsets such that A ∪ {0} contains an α-dimensional vector space, B is
a dense vector subspace, A+B ⊂ A and A ∩B = ∅. Then A ∪ {0} contains
a dense vector space D with dim(D) = α.

We are now ready to state the main result of this section.

Theorem 2.4. (a) For each countable set E ⊂ T the set AUpE is maximal
dense-lineable and spaceable in A(D).

(b) AUK is residual, maximal dense-lineable and spaceable in A(D).

Proof. (a) We first note that AUpE = U((Tn)). Now, let M be the closed

linear span in C(T) of the functions eit 7→ ei2
kt (k ≥ 1). Then M is a closed

infinite-dimensional vector subspace of C(T) such that Sn(f, t) −→
n→∞

f(eit)

uniformly on [0, 2π] for every f ∈ M (see [6, Lemma 3.1]). Since the func-

tions z 7→ z2
k

(k ≥ 1) are in A(D) and A(D) carries the topology inherited

from C(T), we get a closed infinite-dimensional vector subspace M̃ ⊂ A(D)

such that (Snf |T) converges uniformly to f |T for all f ∈ M̃ . In particular,

the sequence {Sn(f, ·)|E}n≥1 converges in CE for all f ∈ M̃ . Then the space-
ability of AUpE is a direct consequence of the fact that AUpE = U((Tn))
and Theorem 2.1 (with X = A(D) and Y = CE).

Next, we are going to prove the maximal dense-lineability of AUpE . To
this end, note that from the spaceability of the same set we can fix a closed
infinite-dimensional vector subspace L of A(D) with L ⊂ AUpE ∪ {0}. Since
L is a separable F-space, an application of Baire’s category theorem yields
dim(L) = c = dim(A(D)), where c denotes cardinality of the continuum.
Thus, it is enough to apply Theorem 2.3 with α = c, X = A(D), A = AUpE ,
B = {the polynomials in z}. Indeed, on the one hand, it is plain that no
polynomial has a universal sequence of Taylor partial sums, so A ∩ B = ∅.
On the other hand, if P is a polynomial and f ∈ AUpE then, given ϕ ∈
CE , there is (nk) ⊂ N with Snk

(f, ·) −→ ϕ − P (k → ∞) pointwise on E.
But Sn(P, ·) = P for all n ≥ degree(P ). Therefore, we get for k large that
Snk

(f + P, ·) = P + Snk
(f, ·), which tends to ϕ as k → ∞ in CE . Thus,

f + P ∈ AUpE or, under our terminology, A+B ⊂ A, as required.

(b) We follow the approach of [16, proof of Lemma 2]. Fix a dense
countable set D ⊂ T and denote by E the family of all finite subsets of
D. Then E is countable and dense in K(T). By Theorem 1.2, AUpD is a
residual subset of A(D). Now, for each f ∈ C(T) (and, in particular, for each
f ∈ A(D)), Ef := {E ∈ K(T) : {Sn(f, ·)|E}n≥1 is dense in C(E)} is a Gδ
subset of K(T) (see [16]). But E ⊂ Ef for all f ∈ UpD, hence for all f ∈ AUpD,
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so Ef is residual in this case. Since AUK = {f ∈ A(D) : Ef is residual}, one
gets AUpD ⊂ AUK. An application of Theorem 1.2 and of part (a) of the
current theorem to E = D concludes the proof. �

We can take advantage of the fact that for countable E ⊂ T the sequence
(Tn) is hereditarily densely universal to prove a result about an interesting
operator, namely, the backward shift

B : f(z) =
∞∑
k=0

akz
k ∈ A(D) 7→

∞∑
k=0

ak+1z
k ∈ A(D).

It is easy to see that B defines a (linear, continuous) operator on A(D). The
hypercyclicity of the operator B : X → X has been extensively studied in
many spaces X, see e.g. [9] (recall that an operator T : X → X is called
hypercyclic whenever the sequence (Tn) of its iterates is universal). For in-
stance, for the Hardy space

H2 = {f(z) =

∞∑
k=0

akz
k ∈ H(D) : ‖f‖2 :=

( ∞∑
k=0

|ak|2
)1/2

< +∞},

the operator B is not hypercyclic because ‖B‖ = 1. An easy argument using
the fact that A(D) is continuously and densely embedded inH2 implies thatB
is not hypercyclic on A(D) either. Nevertheless, we may preserve universality
on small subsets of T.

Theorem 2.5. Let E ⊂ T be a countable set and let (nk) ⊂ N be a strictly
increasing sequence. Then there is a residual subset of functions f in A(D)
such that the set {(Bnkf)|E : k ≥ 1} is dense in CE.

Proof. Let E = {ξ1, ξ2, ξ3, . . . }. Fix ξ ∈ T. Then, for a given subsequence
(nk) ⊂ N, the sequence {ξnk : k ≥ 1} (⊂ T) is bounded. Therefore it contains
a convergent subsequence. Applying successively this result to ξ = ξ1, ξ2, . . . ,
a diagonalization process produces a subsequence (mk) of (nk) such that,
for each ξ ∈ E, the sequence {ξmk}k≥1 converges (to ϕ(ξ), say). Since (Tn)
is hereditarily densely universal, there is a dense – and, according to the
Universality Criterion (see [9]), residual – set R ⊂ A(D) satisfying that
{Smk−1(f, ·)|E : k ≥ 1} (f ∈ R) is dense in CE . Take f ∈ R and fix g ∈ CE .
Define h ∈ CE as h := f −ϕg. Then there is a subsequence (pk) of (mk) such
that Spk−1(f, ξ) −→ h(ξ) (k →∞) for all ξ ∈ E. Finally, the identity

(Bnf)(ξ) =
f(ξ)− Sn−1(f, ξ)

ξn
(ξ ∈ E, n ∈ N)

together with the definition of ϕ and h shows that (Bpkf)(ξ) −→ g(ξ) (k →
∞) pointwise on E. This proves the theorem. �

Remark 2.6. If we consider the backward shift B as a mapping defined on the
Hardy space H2 instead of A(D), we obtain universality on much larger sets
E. According to Carleson’s theorem we have Sn(f, ·)→ f almost everywhere
on T for all f ∈ H2, so we can again expect universality only on sets of
vanishing measure. On the other hand, Theorem 1.1 in [5] shows that the
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sequence Tn : H2 → C(E) is hereditarily densely universal for all compact E
of vanishing measure. If now E is a Dirichlet set, that is, for some subsequence
(mk) of the positive integers (zmk) tends to 1 uniformly on E, then the proof
of Theorem 2.5 shows that there is a residual subset of functions in H2 such
that {(Bmkf)|E : k ≥ 1} is dense in (C(E), || · ||∞). Results on Dirichlet sets
and related small subsets of T can be found e.g. in [7, Section 8.6]. While
Dirichlet sets always have vanishing measure, they may be large in the sense
that the Hausdorff dimension can be 1; see e.g. [12].

3. Rogosinski summability and uniform universality

We now turn to the question for which compact sets E ⊂ T the set AUuE
is nonempty. Again, we consider the sequence (Tn) with Tnf := Sn(f, ·)|E ,
but now as a mapping from A(D) to (C(E), || · ||∞). Since maxE |Tnf | ≤
(n+ 1)‖f‖∞ for all f ∈ A(D), the Tn are continuous.

It was noticed in [16] that from the residuality part of Theorem 1.1(b)
one derives the existence of uncountable compact subsets E of T (necessarily
having vanishing measure) so that {Sn(f, ·)|E : n ≥ 1} is dense in C(E)
for some f ∈ C(T), that is, UuE is nonempty. The same holds for the case
of the disc algebra A(D) (cf. [10]). We will show in Theorem 3.2 below that
this “intertwining of roles” between A(D) and K(T) holds in a strong way. In
fact, there are many such fortunate sets E. With this aim, we define

AKU := {E ∈ K(T) : AUuE is residual in A(D)}.
We need the following auxiliary result, that is similar to the Ulam–Kuratowski
theorem (see e.g. [18, Chap. 15]) relating the property of “being large” with
respect to two spaces.

Lemma 3.1. Let X and Y be Baire topological spaces and let Y be second-
countable. Moreover, assume that S ⊂ X × Y is a subset such that the sets
{x ∈ X : S(x, ·) is a Gδ-set in Y } and {y ∈ Y : S(·, y) is residual in X}
are residual in X and Y , respectively, where we have set S(x, ·) = {y ∈ Y :
(x, y) ∈ S} and S(·, y) = {x ∈ X : (x, y) ∈ S}. Then the set {x ∈ X : S(x, ·)
is residual in Y } is residual in X.

Proof. According to the assumption, there exists a residual subset R of Y
such that S(·, y) is residual in X for all y ∈ R. As Y is a Baire space, R
is dense in Y . The second-countability of Y implies that R is also second-
countable and hence, in particular, separable. Thus, there exists a countable
subset Q of R which is dense in R. Then Q is also dense in Y and the set
X0 :=

⋂
y∈Q S(·, y) is residual in X. For x0 ∈ X0, we have (x0, y) ∈ S and

hence y ∈ S(x0, ·) for all y ∈ Q. Thus, we obtain S(x0, ·) ⊃ Q so that the
denseness of Q in Y implies that S(x0, ·) is dense in Y . The assertion now
follows from the assumption that there exists a residual set X1 ⊂ X such
that S(x, ·) is also a Gδ-set in Y for each x ∈ X1. �

Theorem 3.2. The set AKU is residual in K(T).
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Proof. We apply Lemma 3.1 with X = K(T), Y = A(D) and

S = {(E, f) ∈ K(T)×A(D) : {Sn(f, ·)}n≥1 is dense in C(E)}.

Since X and Y are complete metric spaces, they are both Baire spaces. More-
over, A(D) is separable, so second-countable. Let us denote by P the set of
all complex valued polynomials in two real variables with Gaussian rational
coefficients. The complex Stone–Weierstrass theorem asserts that this set is
(countable and) dense in C(E) for every E ∈ K(T). According to the notation
in Lemma 3.1, we have

S(E, ·) = {f ∈ A(D) : {Sn(f, ·)}n≥1 is dense in C(E)}

=
⋂

j∈N, P∈P

⋃
n∈N

{
f ∈ A(D) : max

ξ∈E
|Sn(f, ξ)− P (ξ)| < 1/j

}
=

⋂
j∈N, P∈P

⋃
n∈N

T−1n (BE(P, 1/j)),

where BE(g, ε) denotes the open ‖ ·‖∞-ball in C(E) with center g and radius
ε. Since T−1n (BE(P, 1/j)) is open in A(D) for each triple (j, P, n), the set
S(E, ·) is a Gδ subset of A(D) = Y for each member E of the (trivially)
residual subset K(T) of K(T) = X. If now f ∈ AUK then, by definition,
the set S(·, f) = {E ∈ K(T) : {Sn(f, ·)}n≥1 is dense in C(E)} is residual in
K(T) = X. By Theorem 2.4, the set AUK is residual in A(D) = Y , and this
proves the theorem. �

A main ingredient in the proof of Theorem 2.4 is the hereditary univer-
sality of the sequence Tn : A(D)→ CE for countable sets E (Remark 2.2). In
particular, for finite sets E the sequence Tn : A(D) → C(E) is hereditarily
densely universal. We prove that the finiteness of E actually turns out to be
necessary. The main tool is the following extension of a classical summability
result due to Rogosinski. The proof runs along the same lines as the proof of
the classical result of Rogosinski corresponding to the case of nj being equal
to j (see e.g. [14, 21]), so it will be omitted. For an arbitrary (formal) power
series

∑∞
k=0 akz

k we denote by Sn(z) the n-th partial sum at the point z ∈ C.

Lemma 3.3. Let (nj) be a sequence in N tending to ∞ and suppose (zj) to be
a sequence of complex numbers so that nj(zj − 1) is bounded. If

∑∞
k=0 akz

k

is a power series with (Sn(1)) being (C, 1)-summable to the complex number
s, then

Snj (zj)− s− (Snj (1)− s)znj

j −→ 0 (j →∞).

Proposition 3.4. Let E ⊂ T with 1 ∈ E and suppose that (Sn(1)) is (C, 1)-
summable to s. Moreover, let (nj) be a sequence in N tending to ∞ and
(eiαj ) a sequence in E with dist({njαj}, 2πZ) > 0 and supj |njαj | < ∞. If
a subsequence of (Snj

) tends to h uniformly on E then h(1) = s.

Proof. Note first that αj → 0 as j → ∞ and that (nj(e
iαj − 1)) ∼ (injαj)

is bounded. From the uniform convergence of (Snjm
) to h on E we obtain
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that Snjm
(eiαjm ) converges to h(1) as m → ∞. Passing to an appropriate

subsequence of (njm) we may assume that njmαjm → α as m→∞. Then

Snjm
(eiαjm )− s− (Snjm

(1)− s)einjmαjm → h(1)− s− (h(1)− s)eiα

and from Lemma 3.3 we have (h(1)− s)(1− eiα) = 0. Now, since eiα 6= 1 the
assertion follows. �

Corollary 3.5. Let E be a compact subset of T so that the sequence Tn :
A(D)→ C(E) is hereditarily universal. Then E is finite.

Proof. Let E ⊂ T be compact and infinite. Without loss of generality we
may suppose that 1 is an accumulation point of E. Let eiαj ∈ E, eiαj → 1,
αj 6= 0, αj → 0 with (|αj |) strictly increasing. Choose positive integers nj
such that π/|αj | ≤ nj < 1+π/|αj |, where we may assume that (nj) is strictly
increasing and |αj | < π for all j. Then nj |αj | → π as j → ∞. According to
Fejér’s theorem, Sn(f, 1) is (C, 1)-summable to f(1) for all f ∈ A(D). Hence,
Proposition 3.4 shows that (Tnj

) is not universal. �

Remark 3.6. Suppose (βk)k∈N to be a strictly increasing sequence of positive
numbers tending to infinity. If (βk+1/βk) is bounded we say that (βk) has
bounded quotients.

Let (βk) have bounded quotients. Then for each n ∈ N there is a unique
kn ∈ N0 with

βkn/2 < n ≤ βkn+1/2

(where β0 := 0). If we define αn := 2π/βkn+1 and if βk+1/βk ≤ M we
have π/M ≤ πβkn/βkn+1 < nαn ≤ π for all n ∈ N and thus, in particular,
dist(0, {nαn}) > 0. We consider a compact subset E of T with 1 ∈ E and
E ⊃ {e2πi/βk : k ∈ N}. If (Sn(1)) is (C, 1)-summable to s and a subsequence
of (Sn) tends to h uniformly on E then Proposition 3.4 (with nj = j) implies
h(1) = s. Moreover, E is not a Dirichlet set1, since

|e2πin/βkn+1 − 1| ≥ |eπi/M − 1|

and therefore

max
z∈E
|zn − 1| ≥ |eπi/M − 1|.

The same statements hold in the case E ⊃ {e−2πi/βk : k ∈ N}.

Example. For each q > 1 the geometric sequence (βk) = (qk) has bounded

quotients. If E is a subset of T with 1 ∈ E and E ⊃ {e2πi/qk : k ∈ N}
then, according to Remark 3.6, the set E is not Dirichlet and for all (Sn)
with the property that (Sn(1)) is (C, 1)-summable to s we necessarily have
h(1) = s for all uniform limits h of subsequences of (Sn) on E. For similar
considerations we refer also to [19, Section 4].

1The autors thank the referee for pointing out the direct proof.
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We shall give a characterization in terms of porosity of the property
that a compact set E ⊂ T does not contain a sequence (e2πi/βk)k with (βk)
having bounded quotients. For A ⊂ R and x ∈ R we put

p+(A, x) := lim sup
r→0

r−1λ+(A, x, r),

where λ+(A, x, r) denotes the supremum of lengths of open intervals lying
in (x, x + r) \ A. The set A is called porous from the right at the point x
if p+(A, x) > 0. If p+(A, x) = 1 then A is called strongly porous from the
right at x (see, e.g. [20, Chapter 8]). Similarly, porosity and strong porosity
from the left can be defined in terms of p−(A, x), with the interval (x, x+ r)
replaced by (x− r, x).

Lemma 3.7. Let E = eiA with 0 ∈ A ⊂ R compact and diam(A) < 2π.
Then A is strongly porous at 0 from the right if and only if E does not
contain a sequence (e2πi/βk)k with (βk) having bounded quotients. The same
statement holds for strong porosity from the left at 0 with (e2πi/βk)k replaced
by (e−2πi/βk)k.

Proof. 1. Suppose that E does not contain a sequence (e2πi/βk)k with (βk)
having bounded quotients. We write A∩(0,∞) = 2π/B with B ⊂ (1,∞) and
require without loss of generality that B is unbounded.

For c > 1 fixed we define a sequence (βk) in B (depending on c) by
recursion. Starting with an arbitrary β1 ∈ B and supposing β1, . . . , βk to be
already defined, we consider the set

Bk := {t ∈ B : βk + 1 ≤ t < c(βk + 1)}.

If Bk 6= ∅, we choose βk+1 ∈ Bk. If Bk = ∅, we choose

βk+1 := min{t ∈ B : t ≥ c(βk + 1)}.

Then βk+1 ≥ βk + 1 and thus, in particular, the sequence (βk) increases
monotonically to ∞. Moreover, the second case appears infinitely often, be-
cause otherwise we would have βk+1/βk < c + 1 for all k sufficiently large,
which would contradict our assumption. This shows that for a subsequence
(βk)k∈I (where I = I(c)), we have

βk+1

βk
≥ cβk + 1

βk
> c

and (βk + 1, βk+1) ∩B = ∅ for all k ∈ I.
Taking c = j+2 for j ∈ N0, we can choose kj ∈ I(j+2) in such a way that

for γ2j := βkj and γ2j+1 := βkj+1 we have γ2j+2 > γ2j+1, γ2j+1/γ2j > j + 2
and (γ2j+1, γ2j+1)∩B = ∅ for j ∈ N0. From this it follows that p+(A, 0) = 1.

2. If A is strongly porous at 0 from the right, it follows easily from the
definition that E does not contain a sequence (e2πi/βk)k with (βk) having
bounded quotients.

3. The case of porosity from the left can be reduced to the former case
by considering −A instead of A. �
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If E is a Dirichlet set and if ζ ∈ E, then from the Definition it is easily
seen that also ζ−1E is a Dirichlet set. Combining Remark 3.6 and Lemma
3.7 (with E replaced by e−ixE) we obtain

Theorem 3.8. Let E = eiA with A ⊂ (−π, π) compact and suppose that A is
not strongly porous at x ∈ A from the left or the right. If (Sn(eix)) is (C, 1)-
summable to s and if a subsequence of (Sn) tends to h uniformly on E then
h(eix) = s. Moreover, E is not a Dirichlet set.

According to Fejér’s theorem, for f in the disc algebra the partial sums
Sn(f, ζ) are (C, 1)-summable at all ζ ∈ T, so the summability condition from
Theorem 3.8 is satisfied for arbitrary x ∈ A.

Remark 3.9. If C is the classical Cantor set, it is easily seen that πC is
not strongly porous from at least one side at all points of the set. So, for
E = eπiC and for f in the disc algebra the only possible uniform limit function
of a subsequence of (Sn(f, ·)) is the function f |E and thus, in particular,
AUuE = ∅. In contrast, as already mentioned in Remark 2.6, Theorem 1.1 in
[5] shows that the sequence Tn : H2 → C(E) is hereditarily densely universal
for E.

Corollary 3.10. Let E = eiA with A ⊂ (−π, π) compact. Then the set A is
strongly porous from the right and the left at all points x ∈ A if one of the
following conditions is satisfied:

1. AUuE is nonempty.
2. E is a Dirichlet set.

Remark 3.11. In contrast, if (βk) is a sequence with β1 ∈ N and so that
βk+1 = Nkβk for some unbounded sequence (Nk) of positive integers, then
A = {2π/βk : k ∈ N} is strongly porous at 0 from the right (and of course
from the left). Actually, the set E = {e2πi/βk : k ∈ N} is a Dirichlet set.

(Indeed: Let I ⊂ N be so that the subsequence (Nk)k∈I of (Nk) tends
to ∞. For m ∈ I we have e2πiβm/βk = 1 for all k ≤ m and

sup
k≥m+1

|e2πiβm/βk − 1| = |e2πi/Nm − 1| → 0 (m→∞,m ∈ I)

and thus zβm → 1 uniformly on E as m→∞, m ∈ I.)

From Theorem 1.7 and Remark 1.8 in [5] it follows that for each Dirichlet
set E there exist power series having the property that (Sn(ζ)) is (C, 1)-
summable at all points ζ ∈ E (actually on an arc containing E) and so that
{Sn|E : n ∈ N0} is dense in C(E). Up to now, no concrete infinite set E with
AUuE 6= ∅ is known. The above results suggest that Dirichlet sets might be
reasonable candidates.
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