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Let Ω be an open subset of the complex plane and let φ be an injective holomorphic
self-map of Ω such that the sequence of iterates of φ is a run-away sequence. We
prove that the composition operator Cφ with symbol φ is spherically universal on
a suitable function space consisting of sphere-valued functions – in contrast to the
known fact that, in general, Cφ is not hypercyclic on H(Ω) in case that Ω is multiply
connected. Moreover, concrete open sets which support spherically universal functions
will explicitly be determined in case that the symbol of the composition operator is
given by a finite Blaschke product of degree two that has an attracting fixed point at
the origin.
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1. Introduction

Given topological spaces X,Y and a family {Tι : ι ∈ I} of continuous mappings
Tι : X → Y , an element x ∈ X is called universal for {Tι : ι ∈ I} if the set {Tι(x) :
ι ∈ I} is dense in Y . In case that T : X → X is continuous and Tn := T ◦ . . . ◦ T
denotes the n-th iterate of T , an element x ∈ X is called universal for T if it is
universal for the family {Tn : n ∈ N}, i.e. if its orbit {Tn(x) : n ∈ N} is dense in X.
We say that a property is fulfilled by comeagre many elements of a Baire space X if
it is fulfilled on a comeagre subset of the corresponding space, i.e. this set contains
a dense Gδ-set in X. According to the Birkhoff transitivity theorem (see e.g. [10,
Theorem 1.16]), in the case of a Polish space X a universal element for T exists
if and only if T is topologically transitive on X and in this case comeagre many
elements turn out to be universal.

An intensively investigated class of operators consists of the class of composition
operators on spaces of holomorphic functions on open subsets of the complex plane;
see e.g. [1] and [10]. For an open subset Ω of the complex plane C and a holomorphic
self-map φ of Ω, the composition operator with symbol φ is defined by

Cφ : H(Ω)→ H(Ω), Cφ(f) := f ◦ φ,

where H(Ω) denotes the Fréchet space of functions holomorphic in Ω endowed with
the topology of locally uniform convergence. In the sequel, we also write φn :=
φ ◦ . . . ◦ φ for the n-th iterate of φ and M∗ := M \ {0} for sets M ⊂ C.
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For fixed 0 < |λ| < 1, let φ denote the automorphism φ : C∗ → C∗, φ(z) := λz. In
[3] (see also [9] and [4]) it was proved that the set of all functions f ∈ H(C∗) which
have the property that {(Cφ)n(f)|U : n ∈ N} = {f ◦φn|U : n ∈ N} is dense in H(U)
for all simply connected open sets U ⊂ C∗ is a comeagre set in H(C∗). Roughly
speaking, this result relies on the following three reasons: Firstly, the symbol φ is
injective, secondly, the sequence of iterates (φn) fulfils the “run-away-behaviour”
φn → 0 ∈ ∂C∗ locally uniformly, and finally, only simply connected open subsets
U of the punctured complex plane are considered. The last restriction is necessary
because it is easily seen that there does not exist a single function f ∈ H(C∗) which
is universal for Cφ – in particular, the operator Cφ is not topologically transitive on
H(C∗) (cf. [3, Remark p.55], see also [10, Corollary 4.30, Proposition 4.31]). Indeed,
assuming that such a function f exists, we could find a strictly increasing sequence
(nk) in N such that (f ◦φnk) converges to 0 uniformly on the unit circle ∂D. Hence,
for M := maxw∈∂D |f(w)|, there would exist some N ∈ N such that for all k ≥ N
and all w ∈ ∂D we had |(f ◦ φnk)(w)| ≤M . Thus, for all k ≥ N and all |z| = |λ|nk ,
we would obtain |f(z)| = |(f ◦φnk)(z/λnk)| ≤M . Therefore, the maximum modulus
principle would imply |f(z)| ≤M for all |λ|nk ≤ |z| ≤ 1 and all k ≥ N , and we would
obtain |f | ≤M on D∗. But this clearly contradicts the denseness of {f ◦φn : n ∈ N}
in H(C∗).

The fact that, in the above situation, the maximum modulus principle does not
allow universality of Cφ on the whole punctured complex plane, now leads to the
idea of considering composition operators between spaces of meromorphic functions.
The main aim of this work is to show that the situation changes in an essential way
if we consider compositional universality in the spherical metric. This will be done
in Section 2, where firstly a general result on compositional universality in the
spherical setting will be proved. Subsequently, this result will be applied to the
case of holomorphic symbols having an attracting fixed point. Finally, if the symbol
is given by a finite Blaschke product B of degree two on the unit disk that has
an attracting fixed point at the origin, concrete open sets which allow universal
functions for CB will explicitly be determined in Section 3.

2. Compositional Universality in M∞(Ω)

For an open set Ω ⊂ C, we say that a function f which maps Ω to the extended
complex plane C∞ is spherically meromorphic if each restriction of f to a connected
component of Ω is either meromorphic or else constantly infinity. We write M∞(Ω)
for the set of spherically meromorphic functions on Ω. Then M∞(Ω) endowed with
the topology of spherically locally uniform convergence turns out to be a completely
metrizable space (cf. [6, Chapter VII]). A metric on M∞(Ω) inducing its topology
is given by

ρ(f, g) :=
∑
n∈N

2−n
ρn(f, g)

1 + ρn(f, g)
,

where ρn(f, g) := maxz∈Kn
χ(f(z), g(z)) with χ denoting the chordal distance on

C∞ and (Kn) being a compact exhaustion of Ω. A basis of the topology of spherically
locally uniform convergence is given by {Vε,K,Ω(f) : ε > 0,K ⊂ Ω compact, f ∈
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M∞(Ω)}, where

Vε,K,Ω(f) :=
{
g ∈M∞(Ω) : max

z∈K
χ(g(z), f(z)) < ε

}
.

For a holomorphic self-map φ of Ω we consider the composition operator

Cφ : M∞(Ω)→M∞(Ω), Cφ(f) := f ◦ φ.

Then Cφ is continuous with (Cφ)n = Cφn for all n ∈ N.

Studying the proofs of the main results in [3] and [9], one can recognize the following
rough outline of how to prove universality properties of a composition operator: It
is assumed (and even necessary) that the symbol is injective and that the sequence
of iterates of the symbol shows some kind of run-away behaviour (cf. the statement
of Theorem 2.3 below). Subsequently, a suitable function is constructed in such
a way that it can be approximated uniformly by rational functions having poles
only outside a given compact set. This approximation, which is the crucial step
of the proofs in [3] and [9], is obtained by an application of Runge’s theorem on
rational approximation of holomorphic functions. In order to obtain universality in
the meromorphic setting, we need the following variant of Runge’s theorem (see
e.g. [8, Satz 11.1]):

Theorem 2.1 (Spherical Runge Theorem) Let K ⊂ C be compact, U ⊃ K open,
f ∈ M(U) and ε > 0. Then there exists a rational function R such that f − R is
holomorphic on an open neighbourhood of K and such that

max
z∈K
|f(z)−R(z)| < ε.

The spherical Runge theorem is a straightforward application of the classical version
(indeed, in order to prove this statement, one can choose an open neighbourhood
U ′ ⊂ U of K on which f has only finitely many poles z1, . . . , zN so that one can
apply the classical Runge theorem to the holomorphic function f −

∑N
n=1 hn, where

hn is the principal part of the Laurent series expansion of f at zn). As an immediate
consequence we obtain that for arbitrary open sets Ω in C the rational functions
(restricted to Ω) are dense in M∞(Ω). In particular, the spherical Runge theorem
implies that M∞(Ω) is separable and thus a Polish space.

We now fix an open set Ω ⊂ C, an open set Ω0 ⊂ C with Ω0 ⊃ Ω and a holomorphic
function φ : Ω → Ω, and we write ∂∞Ω0 for the boundary of Ω0 with respect to
(C∞, χ).

Definition 2.2 For U ⊂ Ω open, a function f ∈M∞(Ω0) is called M∞(U)-universal
for Cφ if the set {f ◦ φn|U : n ∈ N} is dense in M∞(U), that is, f is universal for
the sequence (Cφn,U ) of composition operators

Cφn,U : M∞(Ω0)→M∞(U), Cφn,U (f) := f ◦ φn|U .

Similarly to the holomorphic setting (cf. [12, Theorem 2.2]), the following universal-
ity result holds:

3



August 30, 2016 Complex Variables and Elliptic Equations Spherical˙Universality3008˙neu

Theorem 2.3 Let U ⊂ Ω be open such that φn|U is injective for each n ∈ N and
such that the sequence (dist(φn(·), ∂∞Ω0))n∈N converges to 0 locally uniformly on
U . Then comeagre many functions in M∞(Ω0) are M∞(U)-universal for Cφ.

Proof: According to the universality criterion (see e.g. [10, Theorem 1.57]), it suf-
fices to show that the sequence (Cφn,U ) is topologically transitive.
In order to do so, let f ∈ M∞(Ω0), g ∈ M∞(U) as well as K ⊂ Ω0, L ⊂ U
compact and ε > 0 be given. Due to the assumption, we have uniform convergence
φn|L → ∂∞Ω0. Thus, setting δ := dist(K, ∂∞Ω0), there exists an N ∈ N with
dist(φN (z), ∂∞Ω0) < δ for all z ∈ L, which implies K ∩ φN (L) = ∅. Moreover, by
assumption, the restriction φN |U is injective so that the function

ϕ : K ∪ φN (L)→ C∞, ϕ(z) :=

{
f(z), if z ∈ K
g
(
(φN |U )−1(z)

)
, if z ∈ φN (L)

is well-defined. As the disjoint sets K and φN (L) are compact with K ⊂ Ω0 and
φN (L) ⊂ φN (U) and since we have f ∈M∞(Ω0) as well as g ∈M∞(U), we see that
ϕ can be extended spherically meromorphic to an open neighbourhood of K∪φN (L).
Hence, the spherical Runge theorem yields a rational function R such that

max
z∈K∪φN

(L)χ(ϕ(z), R(z)) < ε.

In particular, due to ϕ = f on K we obtain

max
z∈K

χ(f(z), R(z)) = max
z∈K

χ(ϕ(z), R(z)) ≤ max
z∈K∪φN (L)

χ(ϕ(z), R(z)) < ε

and thus R|Ω0
∈ Vε,K,Ω0

(f). Because of ϕ = g ◦ (φN |U )−1 on φN (L), we further
obtain

max
z∈L

χ
(
g(z), CφN ,U (R|Ω0

) (z)
)

= max
z∈L

χ
(
g(z), R(φN (z))

)
= max

w∈φN (L)
χ
(
g
(
(φN |U )−1(w)

)
, R(w)

)
= max

w∈φN (L)
χ(ϕ(w), R(w))

≤ max
w∈K∪φN (L)

χ(ϕ(w), R(w)) < ε

and thus CφN ,U (R|Ω0
) ∈ Vε,L,U (g). Altogether, it follows that CφN ,U (R|Ω0

) is con-
tained in CφN ,U (Vε,K,Ω0

(f)) ∩ Vε,L,U (g). This shows the topological transitivity of
the sequence (Cφn,U ). �

Remark 2.4 1. The proof of Theorem 2.3 runs similarly as the proof of the cor-
responding theorem in the holomorphic setting (cf. the proof of Theorem 2.2
in [12]). However, the crucial difference in the meromorphic setting lies in the
fact that now the function which is yielded by Runge’s theorem automatically
belongs to the considered function space (that is R|Ω0

∈M∞(Ω0)) – whereas,
in the holomorphic setting, we do not have R|Ω0

∈ H(Ω0) in general because
of possible poles of R in Ω0. Then, a sufficient condition under which it is
guaranteed that R can be chosen to have no poles in Ω0 is given if the set U
is simply connected (cf. the proof of Theorem 2.2 in [12]).
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2. The proof of Theorem 2.3 shows that the sequence (Cφn,U ) is actually topo-
logically mixing (for a definition, see e.g. [10, Definition 1.56]).

In the sequel we restrict ourselves to the case Ω0 = C∗, that is, we ask for the
existence of universal functions which are meromorphic in C∗.

The first application of Theorem 2.3 deals with the case of a symbol φ which is
holomorphic near an attracting fixed point, which we suppose to be 0, i.e. we have
φ(0) = 0 and 0 < |λ| < 1 for λ := φ′(0). According to G. Kœnigs’ linearization
theorem, there exist open neighbourhoods U and V of 0 as well as a conformal
mapping ϕ : U → V which conjugates the map φ|U : U → U to the linear function
` : V → V, `(w) := λw, i.e.

ϕ ◦ φn = `n ◦ ϕ = λn · ϕ

holds on U for all n ∈ N (see e.g. [5, Theorem II.2.1]). In particular, we obtain
ϕ(0) = 0 and locally uniform convergence φn → 0 on U . Since `, ϕ and ϕ−1

are injective, the same is also true for φ|U = ϕ−1 ◦ ` ◦ ϕ. Hence, the restriction
φ|U∗ : U∗ → U∗ is injective and Theorem 2.3 implies

Corollary 2.5 Comeagre many functions in M∞(C∗) are M∞(U∗)-universal for
Cφ.

Remark 2.6 In the special case V = U = C and φ = `, we obtain – in sharp contrast
to the same situation in the holomorphic setting (cf. the example in Section 1) –
that the operator Cφ is topologically transitive on M∞(C∗) (and even topologically
mixing; cf. Remark 2.4)

It is easily seen that whenever we consider an invariant open set U with 0 6∈ U and
so that φ is not injective on U , there cannot exist a function f ∈ M∞(U) which is
M∞(U)-universal for Cφ, that is Cφ : M∞(U) → M∞(U) cannot be universal. In
particular, this is the case for punctured open neighbourhoods of superattracting
fixed points of the symbol – however, at least in the holomorphic setting, then Cφ
fulfils a certain universality property on “many small” compact subsets of such a
neighbourhood (cf. [12], Theorem 3.5).

Let now φ be a holomorphic self-map on an open set Ω and let

A := Aφ,0 := {z ∈ Ω : φn(z)→ 0}

denote the basin of attraction of 0 under φ. It is easily seen that A is completely
invariant under φ and open, this is, φ ∈ H(A) and φ(A) ⊂ A as well as φ−1(A) ⊂ A
(see e.g. [5, p. 28]). It is well-known that the function ϕ from above can be extended
to a holomorphic function Φ on the whole basin of attractionA and that the equation
Φ◦φ = λ ·Φ still holds on A (see e.g. [5, p. 32]). Moreover, it can be shown that this
property determines the function Φ up to a multiplicative nonzero constant (cf. [5,
p. 28]). We consider the backward orbit

O− := O−φ,0 :=
⋃
n∈N
{z ∈ Ω : φn(z) = 0}

of 0 under φ and we write A− := A \O−. Again, A− is completely invariant under
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φ and open but φ is in general not injective on A−. Our aim is to determine the
set of limit functions of the sequence (f ◦ φn|A−) for generic functions f ∈M∞(C∗).
For U ⊂ A− open we write ω(U, f, φ) for the set of all spherically locally uniform
limit functions of the sequence (f ◦ φn|U ).

Theorem 2.7 Let φ ∈ H(Ω) be a self-map and so that
⋂
n∈N φ

n(Ω) is a neigh-
bourhood of 0. If f ∈ M∞(A−) is M∞(U∗)-universal for some open neighbourhood
U ⊂

⋂
n∈N φ

n(Ω) of 0 on which φ is conjugated to w 7→ λw then

ω(A−, f, φ) = {g ◦ Φ|A− : g ∈M∞(Φ(A−))}.

Proof: Combining the statements of Corollary 4.4, Lemma 4.5 and Lemma 4.6
in [12], the proof runs exactly in the same way as the proof of the corresponding
result in the holomorphic setting (cf. [12, Theorem 4.7]). One only has to observe
the following three points: Due to the assumption that U is contained in the 0-
neighbourhood

⋂
n∈N φ

n(Ω), one can prove analogously to the proof of Lemma 4.3
in [12] (which is need for the proof of Corollary 4.4) that we have

ω
(
φ−n(U), f, φ

)
⊃
{
g ◦ Φ|φ−n(U) : g ∈M∞(Φ(φ−n(U)))

}
, n ∈ N0.

Moreover, in view of Corollary 2.5, it now suffices to consider the punctured
neighbourhood U∗ instead of the set U0 which was constructed in the proof of
Lemma 4.5. ii) in [12]. Finally, an analogous statement as that of Lemma 4.5 in [12]
now also holds in the meromorphic setting. �

Corollary 2.5 shows that a neighbourhood U of 0 exists so that comeagre many
f ∈M∞(C∗) turn out to be M∞(U∗)-universal for Cφ. From Theorem 2.7 we obtain

Corollary 2.8 Under the assumption of Theorem 2.7, comeagre many f ∈
M∞(C∗) enjoy the property that

ω(A−, f, φ) = {g ◦ Φ|A− : g ∈M∞(Φ(A−))}.

Remark 2.9 The assumption of
⋂
n∈N φ

n(Ω) being a neighbourhood of 0 is ob-
viously satisfied in the case that 0 ∈ Ω = φ(Ω). Moreover, according to Picard’s
theorem it is also satisfied for entire functions φ that do not omit 0 (with Ω = C).

Remark 2.10 For entire functions φ, Theorem 2.7 yields an analogous statement
in the spherical setting as Theorem 4.7 in [12] does in the holomorphic setting. The
main difference lies in the fact that we can make a statement about the generic set
of limit functions on the whole basin of attraction of 0 under φ except the minimal
(countable) set O−. In contrast, the exceptional sets in the holomorphic setting are
larger (unions of rectifiable curves with Hausdorff dimension 1) and cannot chosen
to be minimal.

3. Determination of sets of universality

Theorem 2.7 implies that M∞(U)-universal functions f ∈M∞(C∗) exist for all open
subsets U of A− with the property that Φ|U is injective. However, in general, we
do not have any information on the shape or the exact location of such sets. In
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this section, it is our aim to explicitly determine open sets U ⊂ A− which support
M∞(U)-universal functions for Cφ in M∞(C∗) in case that the symbol is a rational
function of a special form.

In order to do so, we need some information about φ on a larger neighbourhood of
the attracting fixed point at the origin. Again, the concept of conformal conjugation
will be the main consideration here. Apparently, φ should now be conjugated to a
“simple” function on a “large” open set containing 0. This can be achieved as follows
(cf. [7, p. 586]): For a rational function φ of degree dφ ≥ 2, the Fatou set Fφ of φ is
defined as the set of all points z ∈ C∞ for which there exists a neighbourhood U
of z such that {φn|U : n ∈ N} is a normal family in M∞(U). Considering a simply
connected invariant component G of Fφ with G ⊂ C, G 6= C, the Riemann mapping
theorem implies the existence of a conformal map ψ : G → D := {z ∈ C : |z| < 1}.
Hence, ψ conjugates φ|G : G → G to the function f := ψ ◦ φ ◦ ψ−1 : D → D.
Since rational functions map components of their Fatou sets properly onto each
other (see e.g. [16, Theorem 1 on p. 39]), we obtain that f is a proper self-map of D
(i.e. f−1(K) is compact for each compact set K ⊂ D). It is well-known that each
proper self-map of D is the restriction to D of a finite Blaschke product (see e.g. [16,
Exercise 6 on p. 7], or [15, p. 185]). The simplest subclass of finite Blaschke products
having an attracting fixed point at the origin is given by the functions

Bα : C∞ → C∞, Bα(z) := z · ϕα(z) = z · z − α
1− αz

, α ∈ D∗.

From now on, we fix some α ∈ D∗ and we write B := Bα. Calculating B′(z) = 0,
we see that there exist exactly two critical points of B which are given by

z1 :=
1−

√
1− |α|2
α

and z2 :=
1 +

√
1− |α|2
α

.

Another simple calculation yields 0 < |z1| < |α| < 1 < 1/|α| < |z2| so that z1 is
the only critical point of B in D. Because of argα = arg(1/α), the points 0, z1,
α, 1/α and z2 lie on the same straight line through 0. Moreover, the two distances
|z1 − 1/α| and |z2 − 1/α| are equal. For z, w ∈ C∞, a short computation shows
that we have B(z) = B(w) if and only if w = z or w = −ϕα(z). For z ∈ C∞, we
compute that we have −ϕα(z) = z if and only if z = z1 or z = z2. Thus, the critical
points of B are exactly the fixed points of −ϕα. Indeed, the map −ϕα is a key factor
in understanding the dynamics of B because its geometry on D is known.

In order to describe this geometry, we introduce the following notations: For a
straight line L in the complex plane, we denote by RL the reflection map which
reflects each point in C with respect to L. Considering a point w ∈ C, a radius
r > 0 and the closed disk C := {z ∈ C : |z−w| ≤ r}, we define IC(z) for z ∈ C\{w}
as the point which lies on the ray {w+ t(z−w) : t ≥ 0} and which has distance r2/
|z−w| to w. The map IC is called the inversion on C. We have IC(C◦\{w}) = C\C
and IC(C\C) = C◦\{w}. Each point on ∂C is a fixed point of IC . If w = 0 and
r = 1, we have ID(z) = 1/z for all z ∈ C∗. For a closed disk D which is orthogonal
to C (i.e. the two tangents to D through the two points in ∂C ∩ ∂D pass through
w), it follows IC(D) = D (see [14, p. 149]).

Considering the finite Blaschke product B = Bα, now let L be the straight line
which passes through 0 and α. As stated above, we have z1, z2, 1/α ∈ L and
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0 < |z1| < |α| < 1 < 1/|α| < |z2| as well as |z1 − 1/α| = |z2 − 1/α| (see Figure 1).
Moreover, the two critical points z1 and z2 of B are exactly the two fixed points of
−ϕα. Therefore, there exists a closed disk C with center 1/α which is orthogonal
to D with IC(α) = 0 and ∂C ∩ L = {z1, z2} and such that −ϕα acts on D as the
composition of the reflection RL and the inversion IC in any order, i.e. we have

− ϕα|D = (RL ◦ IC) |D = (IC ◦RL) |D (1)

(see [14, p. 207]).

Figure 1.

We define the disjoint subsets S1, S2, S3 and S4 of D as illustrated in Figure 2.
According to (1), we see that −ϕα interchanges S1 and S3 as well as S2 and S4,

Figure 2.

i.e. we have −ϕα(S1) = S3, −ϕα(S3) = S1, −ϕα(S2) = S4 and −ϕα(S4) = S2.

Lemma 3.1 The finite Blaschke product B is injective on the unions Sk ∪ Sl for
all k, l ∈ {1, 2, 3, 4} with {k, l} /∈ {{1, 3}, {2, 4}}.

Proof : Let z, w ∈ S1 ∪ S2 with B(z) = B(w). Due to the above considerations, it
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follows that z = w or −ϕα(z) = w. But the latter cannot be true because in this
case we would obtain

w = −ϕα(z) ∈ −ϕα(S1 ∪ S2) = −ϕα(S1) ∪ −ϕα(S2) = S3 ∪ S4,

a contradiction. Hence, B is injective on S1∪S2. According to the geometry of −ϕα,
the injectivity of B on the other unions can be shown similarly. �

In order to exemplify the universality statement of Corollary 2.5 in case of the finite
Blaschke product B, we now have a look at the contour lines of B. For 0 < r < 1
and z ∈ D, we have |B(z)| = r if and only if

|z| · |z − α| = r · |1− αz|. (2)

Ignoring the factor |1 − αz| on the right-hand side, the points z ∈ C fulfilling the
equation |z| · |z − α| = r would form a Cassini oval. In general, for two points
w1, w2 ∈ C and a constant c > 0, the Cassini oval C(w1, w2, c) is defined as the
set of all points in the complex plane having the property that the product of their
distances to w1 and w2 has constant value c2, i.e.

C(w1, w2, c) :=
{
z ∈ C : |z − w1| · |z − w2| = c2

}
.

The shapes of these sets according to the value of c are well-known. For small positive
values of c, the set C(w1, w2, c) consists of two disjoint Jordan curves which look like
small circles around w1 and w2. Increasing c, these two components become more
and more egg-shaped until they meet each other in the middle of the line segment
between w1 and w2 for c = |w1 − w2|/2. The figure-eight-shaped set

L(w1, w2) := C(w1, w2, |w1 − w2|/2)

is a lemniscate. For larger values c > |w1 − w2|/2, the Cassini ovals C(w1, w2, c)
consist of one component which first looks like a sand glass, then like an ellipse and
finally like a large circle (cf. [14, p. 71f.]).

In equation (2), the factor |1 − αz| on the right-hand side acts as an “error term”
so that the sets

C̃(0, α, r) := {z ∈ D : |z| |z − α| = r |1− αz|}

look like “deformed” Cassini ovals. As z1 is a critical point of B, the deformed
lemniscate L̃(0, α) is reached for r = |B(z1)|, i.e. we have

L̃(0, α) := {z ∈ D : |B(z)| = |B(z1)|}.

Let W1 and W2 be the components of the open set {z ∈ D : |B(z)| < |B(z1)|} which
contain 0 and α, respectively. On the left-hand side of Figure 3, a plot of several
deformed Cassini ovals is displayed in case of α = 0.4 + 0.6i. The right-hand side
of Figure 3 shows a schematic plot of the deformed lemniscate L̃(0, α) and the sets
W1 and W2.

Lemma 3.2 W1 is invariant under B and we have B(W2) ⊂W1.

9
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Figure 3.

Proof: For z ∈W1, it follows that |B(B(z))| ≤ |B(z)| < |B(z1)|. Hence, we obtain
B(z) ∈W1 ∪W2 and thus B(W1) ⊂W1 ∪W2. We have 0 = B(0) ∈ B(W1), and the
continuity of B and the connectedness of W1 imply that B(W1) is also connected.
According to B(z) ∈ B(W1), there exists a path in B(W1) ⊂ W1 ∪ W2 which
connects 0 and B(z). As this is not possible for B(z) ∈ W2, we obtain B(z) ∈ W1.
Because of 0 = B(α) ∈ B(W2), the inclusion B(W2) ⊂W1 can be proved in exactly
the same way. �

It is well-known that we have B(D) = D as well as B(C∞\D) = C∞\D and that the
origin and the point at infinity are attracting fixed points of B (cf. [13, Problem 7-b
on p. 70]). For this reason, the classification theorem of Fatou components implies
locally uniform convergence Bn → 0 on D (see e.g. [2, p. 163]).

Theorem 3.3 Comeagre many functions in M∞(C∗) are M∞(W ∗1 )-universal and
M∞(W2\{α})-universal for CB.

Proof: We denote by G1 the set of all functions in M∞(C∗) which are M∞(W ∗1 )-
universal for CB and by G2 the set of all functions in M∞(C∗) which are
M∞(W2\{α})-universal for CB.

i) Lemma 3.1 and Lemma 3.2 imply that B|W ∗
1

: W ∗1 → W ∗1 is injective. As we
have locally uniform convergence Bn|W ∗

1
→ 0 on D, Theorem 2.3 yields that

G1 is comeagre in M∞(C∗).
ii) Firstly, we show by induction that Bn is injective on W2 for all n ∈ N. For

n = 1, this follows from Lemma 3.1. Now, let Bn be injective on W2 and
let z, w ∈ W2 with Bn+1(z) = Bn+1(w), i.e. B(Bn(z)) = B(Bn(w)). As we
have Bn(z), Bn(w) ∈ W1 by Lemma 3.2 and as B is injective on W1 due to
Lemma 3.1, we obtain Bn(z) = Bn(w) and hence z = w. Considering the
open sets D := W ∗1 ∪ (W2\{α}) and U := W2\{α} ⊂ D, Lemma 3.2 yields
B(D) ⊂ W ∗1 ⊂ D. According to the injectivity of all iterates Bn on U and
the locally uniform convergence Bn|U → 0, Theorem 2.3 yields that G2 is
comeagre in M∞(C∗). �

As indicated at the beginning of this section, the statement of Theorem 3.3 can
be generalised if the symbol of the composition operator is a rational function φ of
degree dφ ≥ 2 which has an attracting fixed point at the origin. In order to formulate
this result, we consider the case that we have dφ = 2 and that 0 ∈ G ⊂ C, G 6= C,

10
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is a simply connected component of Fφ that is completely invariant under φ. In this
situation, one can show that there exists some α ∈ D∗ such that φ|G is conjugated
to Bα|D (cf. [11, Corollary 5.2.2] and see [11, Example 5.2.3] for diverse examples
of such situations). Denoting by zα the critical point of Bα in D and considering
the open sets V1,α := ψ−1(W1,α) as well as V2,α := ψ−1(W2,α), where W1,α and
W2,α are the components of {z ∈ D : |Bα(z)| < |Bα(zα)|} which contain 0 and α,
respectively, Theorem 3.3 implies the following statement:

Theorem 3.4 In the above situation, comeagre many functions in M∞(C∗) are
M∞(V ∗1,α)-universal and M∞(V2,α\{ψ−1(α)})-universal for Cφ.
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