6. Übung zur Vorlesung Fourier-Transformationen und Fourier-Reihen

A18: Es seien $1 \leq p < q < \infty$. Finden Sie Beispiele, die zeigen, dass weder $L_q(\mathbb{R}) \subset L_p(\mathbb{R})$ noch $L_p(\mathbb{R}) \subset L_q(\mathbb{R})$ gilt.

A
19: Es sei r>0. Zeigen Sie

- a) Für $f \in L_1(\mathbb{R}^N)$ gilt $(f(r \cdot))^{\hat{}} = r^{-N} \widehat{f}(r^{-1} \cdot)$.
- b) Berechenen Sie $\widehat{f_r}$ für die folgenden Funktionen $f_r:\mathbb{R}\to\mathbb{R}$:

 - (i) $f_r(t) = e^{-r|t|}$, (ii) $f_r(t) = e^{-r^2t^2/2}$.

A
20 Beweisen Sie, dass C_c für $1 \leq p \leq \infty$
dicht in L_p ist.

A21: Es sei μ ein komplexes Borelmaß auf \mathbb{R}^N . Zeigen Sie, dass $\widehat{\mu}$ gleichmäßig stetig auf $i\mathbb{R}^N$ ist.