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Abstract

We study Faber-Fourier series for harmonic functions. It is shown
that, in the case of Jordan domains with piecewise Dini-smooth boundary
without cusps, the corresponding series of harmonic polynomials converge
uniformly for Hölder-continuous functions defined on the boundary of the
domain. This results in a constructive approach for the approximate so-
lution of Dirichlet problems by harmonic polynomials in this special situ-
ation. Numerical examples for ellipses and squares are given.
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1 Introduction

For a non-empty compact set K in the complex plane let C(K) denote the space
of continuous complex-valued functions on K. We write a(K) for the subspace
of all u ∈ C(K) such that u|K◦ , with K◦ the interior of K, is harmonic, and
A(K) for the subspace of all h ∈ C(K) such that h|K◦ is holomorphic. Moreover,
let D be a bounded domain in the complex plane and let ω denote a harmonic
measure of D. If D is regular (see e.g. [15]), then for f ∈ C(∂D) the unique
solution of the Dirichlet problem ∆u = 0 in D and u|∂D = f is given by the
Poisson integral

u(z) = (PDf)(z) =

∫
∂D

f(ζ) dω(z, ζ) (z ∈ D)

and PD : C(∂D) → a(D) turns out to be an isometric isomorphism (see again
e.g. [15]). In the case of the unit disc D = D we have

dω(z, ζ) =
1− |z|2

|ζ − z|2
dm(ζ) = Re

(ζ + z

ζ − z

)
dm(ζ),

where m denotes the normalised arc length measure on the unit circle T. By
expanding the Poisson kernel in a geometric series and writing ek(z) := zk for
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k ∈ N0 and e−k(z) := zk for k ∈ N, one obtains

u = Pf := PDf =

∞∑
ν=−∞

f̂(ν)eν

with f̂(k) the k-th Fourier coefficient of the boundary function f . So we have a
series expansion in the harmonic monomials ek that converges locally uniformly
in D. If the Fourier series of f converges uniformly on T, the maximum principle
implies that the harmonic polynomials

∑n
ν=−n f̂(ν)eν converge uniformly on

D to the solution of the Dirichlet problem. According to the Dini-Lipschitz
theorem, this holds in particular if f is Hölder continuous. Our aim is to find
similar series solutions of Dirichlet problems for more general domains D ⊂ C.
A well-known approach for holomorphic functions is the expansion in a Faber
series (see e.g. [2], [4], [16]). We consider, more generally, harmonic Faber series,
that is, series expansions in Faber polynomials Fn and conjugate (harmonic)
Faber polynomials Fn (cf. [1], [16, pp. 280]), where we make systematic use of
the extended (harmonic) Faber operator (see [12]).

2 Harmonic Faber series

Let K ⊂ C be a compact continuum with a connected complement C∞\K. Ac-
cording to the Riemann mapping theorem, there is a unique conformal mapping
ψ := ψK : C∞\D→ C∞\K with

ψ (w) = c · w + c0 +

∞∑
ν=1

c−νw
−ν (

w ∈ C∞\D
)

and c = cK > 0. For the inverse function ϕ of ψ one has

ϕ (ξ) = d · ξ + d0 +

∞∑
ν=1

d−νξ
−ν (|ξ| > sup {|w| : w ∈ K})

where d = 1/c and, more generally,

ϕn (ξ) = dn · ξn +

n−1∑
ν=0

dν,nξ
ν +

∞∑
ν=1

d−ν,nξ
−ν (|ξ| > sup {|w| : w ∈ K}) .

For n ∈ N, the n-th Faber polynomial with respect to K is defined by

Fn (z) := Fn,K (z) := dn · zn +

n−1∑
ν=0

dν,nz
ν (z ∈ C) . (1)

It is well-known that, with F0 = 1,

ψ′ (w)

ψ (w)− z
=

∞∑
ν=0

Fν,K (z)

wν+1
(z ∈ K, |w| > 1) . (2)

2



We put F−n,K := Fn,K for n ∈ N.
In the sequel, we restrict our consideration to compact sets K that are the

closure of a Jordan domain D. If we fix a ∈ D, then there is a unique Riemann
mapping ϕ0 : D → D with ϕ0(a) = 0 and ϕ′(a) > 0. Moreover, ϕ0 extends to
a homeomorphism from K to D, which we also denote by ϕ0. It is easily seen
that here, with ψ0 the inverse of ϕ0,

PDf = P (f ◦ (ψ0|T)) ◦ ϕ0.

Let ĝ(k) denote the k-th Fourier coefficient of g ∈ C(T), for k ∈ Z. If Γ = ∂K is
piecewise Dini-smooth, then Γ is of bounded secant variation (see [5, Theorem
4]) and the Faber operator TD, defined for harmonic polynomials p by

p =

N∑
ν=−N

p̂(ν)eν 7→
N∑

ν=−N
p̂(ν)Fν ,

extends to a continuous linear operator T = TD : C(T) → a(K) (see [12,
Theorem 1]). Moreover, if g ∈ C(T) has a uniformly convergent Fourier series
then

TDg =

∞∑
ν=−∞

ĝ(ν)Fν = lim
n→∞

n∑
ν=−n

ĝ(ν)Fν (3)

with uniform convergence on K and

max
K

∣∣∣TDg − n∑
ν=−n

ĝ(ν)Fν

∣∣∣ ≤ ‖TD‖ ·max
T

∣∣∣g − n∑
ν=−n

ĝ(ν)eν

∣∣∣.
Note that ĝ(k) = 0 for k ≤ 0 if g ∈ A(D). Identifying, as usual, the functions
in A(D) with their boundary functions defined on T, we recall that the classical
Faber operator TD|A(D) is injective and that u ∈ TD(A(D)) if and only if the

Cauchy integral c = c(u ◦ (ψ|T)) of u ◦ (ψ|T) belongs to A(D) (see e.g. [4]). In
the latter case, we have u = TDc. According to Privalov’s theorem, if u ◦ (ψ|T)
is Hölder continuous on T, its Cauchy integral is Hölder continuous on D and
thus belongs to A(D).

Let h(D) and H(D), respectively, denote the spaces of harmonic functions in
D and holomorphic functions in D. It is easily seen that h(D) = H(D)⊕H(D),
where

H(D) := {u : u(a) = 0, u ∈ H(D)}

is the space of anti-holomorphic functions in D vanishing at a. For f ∈ C(Γ)
we write

PDf = QDf +RDf,

where QDf ∈ H(D) and RDf ∈ H(D). Moreover, for α ∈ (0, 1] let aα(K)
denote the space of functions in a(K) which satisfy a Hölder condition of order
α on Γ and, similarly, let Aα(K) denote the space of functions in A(K) which
satisfy a Hölder condition of order α on Γ. Equipped with the corresponding
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Hölder-norms, aα(K) and Aα(K) become Banach spaces. In [17] it is shown
that functions in Aα(K) satisfy a Hölder condition also on K. We set a+(K) :=⋃
α>0 aα(K) and A+(K) :=

⋃
α>0Aα(K).

If Γ has no cusps, then it satisfies an inner and an outer wedge condition at
each corner (and thus at each point). According to results of Lesley (see [10]
and [11]), the conformal mappings ψ0 and ϕ0 are Hölder continuous. With

A+(K) := {u : u(a) = 0, u ∈ A+(K)}

and according to continuity properties of Cauchy integrals (Privalov’s theorem)
this implies (cf. [13, Prop. 2.28])

a+(K) = A+(K)⊕A+(K). (4)

We write C+(Γ) for the space of functions in C(Γ) which are Hölder contin-
uous of some order α > 0. Then (4) implies the injectivity of TD|C+(T) (cf. [13,
Proposition 2.30]).

Let now f ∈ C+(Γ). Then f is Hölder continuous of some order α > 0 and
thus PDf ∈ aα(K). From (4) we have QDf ∈ A+(K) and RDf ∈ A+(K).
Hence, with Q := QD, and R = RD the functions Q(QDf ◦ (ψ|T)) and R(RDf ◦
(ψ|T)) belong to C+(T), so that for

SDf := Q(QDf ◦ (ψ|T)) +R(RDf ◦ (ψ|T))

we have SD(C+(Γ)) ⊂ C+(T). From [12, Theorem 3] we obtain (TDSDf)|Γ =
f and hence TDSDf = PDf , by uniqueness of the solution of the Dirichlet
problem. The Dini-Lipschitz theorem implies that the Fourier series of SDf
converges uniformly on T. Summing up, we obtain

Theorem 2.1. Let D be a Jordan domain with piecewise Dini-smooth boundary
having no cusps. If f ∈ C+(Γ) then

PDf = TDSDf =

∞∑
ν=−∞

(SDf )̂ (ν)Fν (5)

with uniform convergence on K.

The theorem shows that, for domains D with piecewise Dini-smooth bound-
ary having no cusps, the Dirchlet problem with boundary function f ∈ C+(Γ)
can be solved approximately by partial sums of (5), this means, by harmonic
polynomials matching the boundary function up to a prescribed (absolute) error
in the uniform norm, where the coefficients are given as Fourier coefficients of
SDf . Similar approaches to solve Dirichlet problems are described in [1] and
[16, pp. 280], where the boundary functions are less restricted but Γ is required
to be analytic or of sufficient smoothness. Note that Theorem 2.1 applies in
particular to the case of a polygonal domain.

In view of Theorem 2.1 immediately the question arises how the Fourier
transform (SDf )̂ can be calculated in terms of f and D without harmonic
conjugates involved.
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We have

PDf = P (f ◦ ψ0|T) ◦ ϕ0 =

∫
T
f(ψ0(ζ)) Re

(ζ + ϕ0

ζ − ϕ0

)
dm(ζ)

on D. Since

Re
(ζ + ϕ0

ζ − ϕ0

)
= 1 +

∞∑
µ=1

ϕµ0/ζ
µ +

∞∑
µ=1

ϕ0
µ/ζ

µ

with locally uniform convergence on D we obtain

TDSDf = PDf = (f ◦ ψ0)̂ (0) +

∞∑
µ=1

(f ◦ ψ0)̂ (µ)ϕµ0 +

∞∑
µ=1

(f ◦ ψ0)̂ (−µ)ϕ0
µ.

Expansion of ϕµ0 ∈ A+(K) into a Faber series leads to

ϕµ0 (z) =

∞∑
ν=0

(ϕµ0 ◦ ψ)̂ (ν)Fν(z)

with uniform convergence on K. Since ϕ0 ◦ ψ is bounded by 1 on Γ, the same
holds for the Fourier coefficients (ϕµ0 ◦ψ)̂ (ν). If (Fν(z)) is absolutely summable
for some z ∈ K (which is e.g. the case if ψ′′ beongs to the Hardy space H1; see
[16, p. 83]), and if ((f ◦ ψ0)̂ (µ)) is absolutely summable (which is the case if
f ◦ ψ0 ∈ Lip(α) for some α > 1/2 by Bernstein’s Theorem, and if f ◦ ψ0 is in
C+(T) and of bounded variation by a result of Zygmund; see e.g [9]), then by
interchanging the order of summation and comparing the coefficients (which is
allowed due to the injectivity of TD|C+(T)) we obtain

(SDf )̂ (k) =

∞∑
µ=−∞

(f ◦ ψ0)̂ (µ) · (ϕµ0 ◦ ψ)̂ (k)

with absolute convergence. The important feature is that the required infor-
mation concerning the boundary function f is reduced to the Fourier coeffi-
cients (f ◦ψ0)̂ (µ). In particular, no harmonic conjugates are needed here. The
Fourier transforms (ϕµ0 ◦ ψ)̂ depend only on the domain D, but not on f . So,
once computed, variations in the boundary function f only require the evalua-
tion of (f ◦ ψ0)̂ (µ). Since we are restricted to Fourier coefficients, Fast Fourier
Transform (FFT) turns out to be a quite efficient tool.

An further approach (cf. [16, pp. 280], [13]) to calculate (SDf )̂ in terms of
f ◦ ψ0 is based on the expansion of the Schwarz-kernel

s(ζ, z) :=
ζ + ϕ0(z)

ζ − ϕ0(z)

into a Faber series. If |w| > 1 then s(w, ·) ∈ A+(D) and the Faber series

s(w, z) =

∞∑
µ=0

aµ(w)Fµ(z),
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with
ak(w) := (s(w, ·) ◦ ψ)̂ (k) (k ∈ N0)

converges uniformly on K. Moreover, the parameter integrals ak are holomor-
phic in C\D. If the ak have radial boundary values ak(ζ) at almost all ζ ∈ T and
if for some z ∈ D we have s(ζ, z) =

∑∞
µ=0 aµ(ζ)Fµ(z) with ”reasonable” con-

vergence with respect to ζ, then the Fourier transform (SDf )̂ may be deduced
from

(TDSDf)(z) =

∫
(f ◦ ψ0) Re(s(·, z)) dm =

∞∑
µ=−∞

Fµ(z)

∫
(f ◦ ψ0) bµ dm,

where b0 := Re(a0), bk := ak/2 for k > 0 and bk := b−k for k < 0, namely,

(SDf )̂ (k) =

∫
(f ◦ ψ0)bk dm (k ∈ Z). (6)

Again, it is seen that the dependence on f is only in form of f ◦ ψ0 and in
particular no harmonic conjugate is involved. Also, once the ak (and then also
the bk) are evaluated, for varying f the computation of (SDf )̂ (k) can be done
efficiently by numerical integration.

If Γ is piecewise analytic, that is, if ψ extends holomorphically beyond T ex-
cept for finitely many points ζ1, . . . , ζm, then, due to deformation of the contour
of integration T underlying the Fourier coefficients ak(w), the functions ak also
extend holomorphically beyond T except for the points ϕ(ψ0(ζ1)), . . . , ϕ(ψ0(ζm)).

If Γ is analytic, then s(ζ, z) =
∑∞
µ=0 aµ(ζ)Fµ(z) holds uniformly with respect

to ζ, for each z ∈ D (see [13]). Since the ak are given as Fourier coefficients
in terms of the the Schwarz kernel, again FFT can be employed for efficient
computation.

3 Example I: Ellipse

For fixed R > 1 let D =
{
z ∈ C : (Re(z)/a)2 + (Im(z)/b)2 < 1

}
be the domain

bounded by the ellipse with semi-axes

a =
1

2

(
R+

1

R

)
, b =

1

2

(
R− 1

R

)
.

Then ψ : C∞\D→ C∞\K is given by

ψ (w) :=
1

2

(
Rw +

1

Rw

) (
w ∈ C∞\D

)
and

Fn,K =
2

Rn
Tn (n ∈ N)
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where Tn denotes the Chebyshev polynomial of degree n. Since the Chebyshev
polynomials can be computed efficiently, the main task for evaluating the n-
partial sum of (5) is in the approximative computation of the Fourier coefficients

ck(f) := (SDf )̂ (k)

for |k| ≤ n. Since the domain is analytically bounded, we can compute the
ck(f) with the aid of Equation (6). So we need to have knowledge about bk and
hence about the conformal mappings ϕ0 : D → D and ψ0 : D → D, given here
in terms of elliptic integrals. The incomplete elliptic integral of the first kind F
is defined as

F
(
z, t2

)
=

z∫
0

dx√
(1− x2) (1− t2x2)

. (7)

The square root is to be regarded as
√

1− x
√

1 + x
√

1− tx
√

1 + tx; the argu-
ments are determined such that each factor is equal to 1 for x = 0. We set
K
(
t2
)

:= F
(
1, t2

)
for t2 6= 1; then K is called the complete elliptic integral of

the first kind. The inverse of F
(
· , t2

)
is given by sn

(
· , t2

)
for t2 6= 1, with sn

denoting the sinus amplitudinis.
As one can find in [8, p. 322] and [14, p. 296], ϕ0 has the representation

ϕ0 (z) =
√
s · sn

(2K
(
s2
)

π
arcsin (z) ; s2

)
(z ∈ D) . (8)

Here, arcsin (z) = −i log
(
iz +

√
1− z2

)
where

√
1− z2 has to be understood as

product
√

1− z
√

1 + z and the branches of the square roots are taken such that
each factor is equal to 1 for z = 0, and the principal value of the logarithm is
taken. The modulus s ∈ (0, 1) can be computed via the equation

πK
(
1− s2

)
2K (s2)

= 2arsinh (b) .

Equation (8) implies

ψ0 (w) = sin

(
π

2K (s2)
F

(
w√
s
, s2

))
(w ∈ D) .

For numerical purposes, FFT provides an efficient and stable approach for the
evaluation of the Fourier coefficients ak(ζ) for k ∈ N0 and ζ ∈ T (cf. [6]).

As for example, we approximately solve several Dirichlet problems with vary-
ing the boundary function f where we fix the ellipse with semi axis a = 5/4 and
b = 3/4. Figure 1 and Figure 2, respectively, show the 10-th partial sum of the

Faber expansion (5) for f(z) = |Re (z)|3/2 and for f (z) = |Re (z)| with the exact
boundary function f in red. The non-smoothness at ±i3/4 in the second case
naturally causes a larger error near these points. Furthermore, we consider a
boundary functions which has isolated singularities inside or outside the ellipse
if considered as (rational) function in C, namely f (z) = Re(1/(1− z4)) having
the singularities ±1 (in the interior of the ellipse) and ±i (in the exterior of the
ellipse). In this case, the partial sum is of degree 20. The result can be seen in
Figure 3.
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Figure 1: Plot of f in the case f (z) = |Re (z)|3/2
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4 Example II: Square

We consider the interior D of the square with corners in ±1 and ±i. Although
D is not bounded by an analytic Jordan curve, we apply the above method
to compute an approximate solution of a given Dirichlet problem. To do so,
we have to know about the conformal mappings ϕ0, ψ0 and ψ. Since D is a
square, these functions are given by Schwarz-Christoffel mappings (see e.g. [7,
p. 411ff.]): We have

ψ0 (w) = C

w∫
0

dz√
1− z4

= CF (w,−1) (w ∈ D)

where C is determined by

1 = C

1∫
0

dw√
1− w4

.

That leads us to

C =
Γ
(

3
4

)
Γ
(

5
4

)
Γ
(

1
2

)
with Γ denoting the gamma function. For the inverse function ϕ0, we obtain
the representation

ϕ0 (z) = sn (z/c,−1) (z ∈ D) .

Further, the function φ defined by

φ (w) = C1

w∫
w0

√
1− z4

z2
dz + C2 (w ∈ D) ,

where C1, C2 and w0 6= 0 are chosen so that φ (±1) = ±1 and φ (±i) = ±i,
maps D conformally onto C∞\K with φ (0) =∞. One computes

w∫
w0

√
1− z4

z2
dz = −

(√
1− z4

z
− 2 (E (z,−1)− F (z,−1))

)∣∣∣∣∣
w

w0

where

E
(
z, t2

)
=

z∫
0

√
(1− t2x2)

(1− x2)
dx

denotes the incomplete elliptic integral of the second kind. Here, the root means√
(1− tx)

√
(1 + tx)√

1− x
√

1 + x
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Figure 4: Approximation of u in the case f (z) = |Re (z)|
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Figure 5: Approximation of u in the case f (z) =
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where the branches of the roots are taken such that each factor is equal to 1 for
x = 0. By ψ (w) = φ (1/w), we obtain the looked-for ψ.

As in the case of analytically bounded domains, the ak do not depend on the
boundary function f . However, now we are faced with the problem of having
corners in Γ. But still Γ is piecewise analytic, so except for the preimages of
the corners under ϕ◦ψ0, the functions ak exist on T. By modifying the contour
of integration appropriately, we can approximately evaluate ak(ζ) by numerical
integration (for details and corresponding MATLAB codes see [13]). Then the
Fourier coefficients ck(f) := (SDf )̂ (k) can be achieved from (6) by numerical
integration.

Computation of the partial sums of (5) also requires evaluation of the Faber
polynomials Fn,K . We have calculated the Fn,K with the Schwarz-Christoffel
toolbox for MATLAB, which is established by Driscoll and introduced in [3].
Figures 4 to 6 show examples of the 10-th partial sums for different boundary
functions f as well as the exact functions in red.
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