The harmonic Faber operator and approximate solutions of Dirichlet problems

L. Frerick, J. Müller and M. Müller

September 29, 2021

Abstract

We study Faber-Fourier series for harmonic functions. It is shown that, in the case of Jordan domains with piecewise Dini-smooth boundary without cusps, the corresponding series of harmonic polynomials converge uniformly for Hölder-continuous functions defined on the boundary of the domain. This results in a constructive approach for the approximate solution of Dirichlet problems by harmonic polynomials in this special situation. Numerical examples for ellipses and squares are given.

Keywords: Faber series, harmonic polynomials, Dirichlet problem 2010 Mathematics Subject Classification: 30E10, 41A58

1 Introduction

For a non-empty compact set K in the complex plane let $C(K)$ denote the space of continuous complex-valued functions on K. We write $a(K)$ for the subspace of all $u \in C(K)$ such that $\left.u\right|_{K^{\circ}}$, with K° the interior of K, is harmonic, and $A(K)$ for the subspace of all $h \in C(K)$ such that $\left.h\right|_{K^{\circ}}$ is holomorphic. Moreover, let D be a bounded domain in the complex plane and let ω denote a harmonic measure of D. If D is regular (see e.g. [15]), then for $f \in C(\partial D)$ the unique solution of the Dirichlet problem $\Delta u=0$ in D and $\left.u\right|_{\partial D}=f$ is given by the Poisson integral

$$
u(z)=\left(P_{D} f\right)(z)=\int_{\partial D} f(\zeta) d \omega(z, \zeta) \quad(z \in D)
$$

and $P_{D}: C(\partial D) \rightarrow a(\bar{D})$ turns out to be an isometric isomorphism (see again e.g. [15]). In the case of the unit disc $D=\mathbb{D}$ we have

$$
d \omega(z, \zeta)=\frac{1-|z|^{2}}{|\zeta-z|^{2}} d m(\zeta)=\operatorname{Re}\left(\frac{\zeta+z}{\zeta-z}\right) d m(\zeta)
$$

where m denotes the normalised arc length measure on the unit circle \mathbb{T}. By expanding the Poisson kernel in a geometric series and writing $e_{k}(z):=z^{k}$ for
$k \in \mathbb{N}_{0}$ and $e_{-k}(z):=\bar{z}^{k}$ for $k \in \mathbb{N}$, one obtains

$$
u=P f:=P_{\mathbb{D}} f=\sum_{\nu=-\infty}^{\infty} \widehat{f}(\nu) e_{\nu}
$$

with $\widehat{f}(k)$ the k-th Fourier coefficient of the boundary function f. So we have a series expansion in the harmonic monomials e_{k} that converges locally uniformly in \mathbb{D}. If the Fourier series of f converges uniformly on \mathbb{T}, the maximum principle implies that the harmonic polynomials $\sum_{\nu=-n}^{n} \widehat{f}(\nu) e_{\nu}$ converge uniformly on $\overline{\mathbb{D}}$ to the solution of the Dirichlet problem. According to the Dini-Lipschitz theorem, this holds in particular if f is Hölder continuous. Our aim is to find similar series solutions of Dirichlet problems for more general domains $D \subset \mathbb{C}$. A well-known approach for holomorphic functions is the expansion in a Faber series (see e.g. [2], [4], [16]). We consider, more generally, harmonic Faber series, that is, series expansions in Faber polynomials F_{n} and conjugate (harmonic) Faber polynomials $\overline{F_{n}}$ (cf. [1], [16, pp. 280]), where we make systematic use of the extended (harmonic) Faber operator (see [12]).

2 Harmonic Faber series

Let $K \subset \mathbb{C}$ be a compact continuum with a connected complement $\mathbb{C}_{\infty} \backslash K$. According to the Riemann mapping theorem, there is a unique conformal mapping $\psi:=\psi_{K}: \mathbb{C}_{\infty} \backslash \overline{\mathbb{D}} \rightarrow \mathbb{C}_{\infty} \backslash K$ with

$$
\psi(w)=c \cdot w+c_{0}+\sum_{\nu=1}^{\infty} c_{-\nu} w^{-\nu} \quad\left(w \in \mathbb{C}_{\infty} \backslash \overline{\mathbb{D}}\right)
$$

and $c=c_{K}>0$. For the inverse function φ of ψ one has

$$
\varphi(\xi)=d \cdot \xi+d_{0}+\sum_{\nu=1}^{\infty} d_{-\nu} \xi^{-\nu} \quad(|\xi|>\sup \{|w|: w \in K\})
$$

where $d=1 / c$ and, more generally,

$$
\varphi^{n}(\xi)=d^{n} \cdot \xi^{n}+\sum_{\nu=0}^{n-1} d_{\nu, n} \xi^{\nu}+\sum_{\nu=1}^{\infty} d_{-\nu, n} \xi^{-\nu} \quad(|\xi|>\sup \{|w|: w \in K\})
$$

For $n \in \mathbb{N}$, the n-th Faber polynomial with respect to K is defined by

$$
\begin{equation*}
F_{n}(z):=F_{n, K}(z):=d^{n} \cdot z^{n}+\sum_{\nu=0}^{n-1} d_{\nu, n} z^{\nu} \quad(z \in \mathbb{C}) \tag{1}
\end{equation*}
$$

It is well-known that, with $F_{0}=1$,

$$
\begin{equation*}
\frac{\psi^{\prime}(w)}{\psi(w)-z}=\sum_{\nu=0}^{\infty} \frac{F_{\nu, K}(z)}{w^{\nu+1}} \quad(z \in K,|w|>1) \tag{2}
\end{equation*}
$$

We put $F_{-n, K}:=\overline{F_{n, K}}$ for $n \in \mathbb{N}$.
In the sequel, we restrict our consideration to compact sets K that are the closure of a Jordan domain D. If we fix $a \in D$, then there is a unique Riemann mapping $\varphi_{0}: D \rightarrow \mathbb{D}$ with $\varphi_{0}(a)=0$ and $\varphi^{\prime}(a)>0$. Moreover, φ_{0} extends to a homeomorphism from K to $\overline{\mathbb{D}}$, which we also denote by φ_{0}. It is easily seen that here, with ψ_{0} the inverse of φ_{0},

$$
P_{D} f=P\left(f \circ\left(\left.\psi_{0}\right|_{\mathbb{T}}\right)\right) \circ \varphi_{0}
$$

Let $\widehat{g}(k)$ denote the k-th Fourier coefficient of $g \in C(\mathbb{T})$, for $k \in \mathbb{Z}$. If $\Gamma=\partial K$ is piecewise Dini-smooth, then Γ is of bounded secant variation (see [5, Theorem 4]) and the Faber operator T_{D}, defined for harmonic polynomials p by

$$
p=\sum_{\nu=-N}^{N} \widehat{p}(\nu) e_{\nu} \mapsto \sum_{\nu=-N}^{N} \widehat{p}(\nu) F_{\nu},
$$

extends to a continuous linear operator $T=T_{D}: C(\mathbb{T}) \rightarrow a(K)$ (see [12, Theorem 1]). Moreover, if $g \in C(\mathbb{T})$ has a uniformly convergent Fourier series then

$$
\begin{equation*}
T_{D} g=\sum_{\nu=-\infty}^{\infty} \widehat{g}(\nu) F_{\nu}=\lim _{n \rightarrow \infty} \sum_{\nu=-n}^{n} \widehat{g}(\nu) F_{\nu} \tag{3}
\end{equation*}
$$

with uniform convergence on K and

$$
\max _{K}\left|T_{D} g-\sum_{\nu=-n}^{n} \widehat{g}(\nu) F_{\nu}\right| \leq\left\|T_{D}\right\| \cdot \max _{\mathbb{T}}\left|g-\sum_{\nu=-n}^{n} \widehat{g}(\nu) e_{\nu}\right| .
$$

Note that $\widehat{g}(k)=0$ for $k \leq 0$ if $g \in A(\overline{\mathbb{D}})$. Identifying, as usual, the functions in $A(\overline{\mathbb{D}})$ with their boundary functions defined on \mathbb{T}, we recall that the classical Faber operator $\left.T_{D}\right|_{A(\overline{\mathbb{D}})}$ is injective and that $u \in T_{D}(A(\overline{\mathbb{D}}))$ if and only if the Cauchy integral $c=c\left(u \circ\left(\left.\psi\right|_{\mathbb{T}}\right)\right)$ of $u \circ\left(\left.\psi\right|_{\mathbb{T}}\right)$ belongs to $A(\overline{\mathbb{D}})$ (see e.g. [4]). In the latter case, we have $u=T_{D} c$. According to Privalov's theorem, if $u \circ\left(\left.\psi\right|_{\mathbb{T}}\right)$ is Hölder continuous on \mathbb{T}, its Cauchy integral is Hölder continuous on $\overline{\mathbb{D}}$ and thus belongs to $A(\overline{\mathbb{D}})$.

Let $h(D)$ and $H(D)$, respectively, denote the spaces of harmonic functions in D and holomorphic functions in D. It is easily seen that $h(D)=H(D) \oplus \bar{H}(D)$, where

$$
\bar{H}(D):=\{\bar{u}: u(a)=0, u \in H(D)\}
$$

is the space of anti-holomorphic functions in D vanishing at a. For $f \in C(\Gamma)$ we write

$$
P_{D} f=Q_{D} f+R_{D} f
$$

where $Q_{D} f \in H(D)$ and $R_{D} f \in \bar{H}(D)$. Moreover, for $\alpha \in(0,1]$ let $a_{\alpha}(K)$ denote the space of functions in $a(K)$ which satisfy a Hölder condition of order α on Γ and, similarly, let $A_{\alpha}(K)$ denote the space of functions in $A(K)$ which satisfy a Hölder condition of order α on Γ. Equipped with the corresponding

Hölder-norms, $a_{\alpha}(K)$ and $A_{\alpha}(K)$ become Banach spaces. In [17] it is shown that functions in $A_{\alpha}(K)$ satisfy a Hölder condition also on K. We set $a_{+}(K):=$ $\bigcup_{\alpha>0} a_{\alpha}(K)$ and $A_{+}(K):=\bigcup_{\alpha>0} A_{\alpha}(K)$.

If Γ has no cusps, then it satisfies an inner and an outer wedge condition at each corner (and thus at each point). According to results of Lesley (see [10] and [11]), the conformal mappings ψ_{0} and φ_{0} are Hölder continuous. With

$$
\overline{A_{+}}(K):=\left\{\bar{u}: u(a)=0, u \in A_{+}(K)\right\}
$$

and according to continuity properties of Cauchy integrals (Privalov's theorem) this implies (cf. [13, Prop. 2.28])

$$
\begin{equation*}
a_{+}(K)=A_{+}(K) \oplus \overline{A_{+}}(K) \tag{4}
\end{equation*}
$$

We write $C_{+}(\Gamma)$ for the space of functions in $C(\Gamma)$ which are Hölder continuous of some order $\alpha>0$. Then (4) implies the injectivity of $\left.T_{D}\right|_{C_{+}(\mathbb{T})}$ (cf. [13, Proposition 2.30]).

Let now $f \in C_{+}(\Gamma)$. Then f is Hölder continuous of some order $\alpha>0$ and thus $P_{D} f \in a_{\alpha}(K)$. From (4) we have $Q_{D} f \in A_{+}(K)$ and $R_{D} f \in \overline{A_{+}}(K)$. Hence, with $Q:=Q_{\mathbb{D}}$, and $R=R_{\mathbb{D}}$ the functions $Q\left(Q_{D} f \circ\left(\left.\psi\right|_{\mathbb{T}}\right)\right)$ and $R\left(R_{D} f \circ\right.$ $\left.\left(\left.\psi\right|_{\mathbb{T}}\right)\right)$ belong to $C_{+}(\mathbb{T})$, so that for

$$
S_{D} f:=Q\left(Q_{D} f \circ\left(\left.\psi\right|_{\mathbb{T}}\right)\right)+R\left(R_{D} f \circ\left(\left.\psi\right|_{\mathbb{T}}\right)\right)
$$

we have $S_{D}\left(C_{+}(\Gamma)\right) \subset C_{+}(\mathbb{T})$. From [12, Theorem 3] we obtain $\left.\left(T_{D} S_{D} f\right)\right|_{\Gamma}=$ f and hence $T_{D} S_{D} f=P_{D} f$, by uniqueness of the solution of the Dirichlet problem. The Dini-Lipschitz theorem implies that the Fourier series of $S_{D} f$ converges uniformly on \mathbb{T}. Summing up, we obtain

Theorem 2.1. Let D be a Jordan domain with piecewise Dini-smooth boundary having no cusps. If $f \in C_{+}(\Gamma)$ then

$$
\begin{equation*}
P_{D} f=T_{D} S_{D} f=\sum_{\nu=-\infty}^{\infty}\left(S_{D} f\right)^{\wedge}(\nu) F_{\nu} \tag{5}
\end{equation*}
$$

with uniform convergence on K.
The theorem shows that, for domains D with piecewise Dini-smooth boundary having no cusps, the Dirchlet problem with boundary function $f \in C_{+}(\Gamma)$ can be solved approximately by partial sums of (5), this means, by harmonic polynomials matching the boundary function up to a prescribed (absolute) error in the uniform norm, where the coefficients are given as Fourier coefficients of $S_{D} f$. Similar approaches to solve Dirichlet problems are described in [1] and [16, pp. 280], where the boundary functions are less restricted but Γ is required to be analytic or of sufficient smoothness. Note that Theorem 2.1 applies in particular to the case of a polygonal domain.

In view of Theorem 2.1 immediately the question arises how the Fourier transform $\left(S_{D} f\right)^{\wedge}$ can be calculated in terms of f and D without harmonic conjugates involved.

We have

$$
P_{D} f=P\left(\left.f \circ \psi_{0}\right|_{\mathbb{T}}\right) \circ \varphi_{0}=\int_{\mathbb{T}} f\left(\psi_{0}(\zeta)\right) \operatorname{Re}\left(\frac{\zeta+\varphi_{0}}{\zeta-\varphi_{0}}\right) d m(\zeta)
$$

on D. Since

$$
\operatorname{Re}\left(\frac{\zeta+\varphi_{0}}{\zeta-\varphi_{0}}\right)=1+\sum_{\mu=1}^{\infty} \varphi_{0}^{\mu} / \zeta^{\mu}+\sum_{\mu=1}^{\infty}{\overline{\varphi_{0}}}^{\mu} / \bar{\zeta}^{\mu}
$$

with locally uniform convergence on D we obtain

$$
T_{D} S_{D} f=P_{D} f=\left(f \circ \psi_{0}\right)\left\ulcorner(0)+\sum_{\mu=1}^{\infty}\left(f \circ \psi_{0}\right) \curlyvee(\mu) \varphi_{0}^{\mu}+\sum_{\mu=1}^{\infty}\left(f \circ \psi_{0}\right)(-\mu){\overline{\varphi_{0}}}^{\mu} .\right.
$$

Expansion of $\varphi_{0}^{\mu} \in A_{+}(K)$ into a Faber series leads to

$$
\varphi_{0}^{\mu}(z)=\sum_{\nu=0}^{\infty}\left(\varphi_{0}^{\mu} \circ \psi\right)^{\curlyvee}(\nu) F_{\nu}(z)
$$

with uniform convergence on K. Since $\varphi_{0} \circ \psi$ is bounded by 1 on Γ, the same holds for the Fourier coefficients $\left(\varphi_{0}^{\mu} \circ \psi\right)^{\Upsilon}(\nu)$. If $\left(F_{\nu}(z)\right)$ is absolutely summable for some $z \in K$ (which is e.g. the case if $\psi^{\prime \prime}$ beongs to the Hardy space H^{1}; see [16, p. 83]), and if $\left(\left(f \circ \psi_{0}\right)^{\wedge}(\mu)\right)$ is absolutely summable (which is the case if $f \circ \psi_{0} \in \operatorname{Lip}(\alpha)$ for some $\alpha>1 / 2$ by Bernstein's Theorem, and if $f \circ \psi_{0}$ is in $C_{+}(\mathbb{T})$ and of bounded variation by a result of Zygmund; see e.g [9]), then by interchanging the order of summation and comparing the coefficients (which is allowed due to the injectivity of $\left.\left.T_{D}\right|_{C_{+}(\mathbb{T})}\right)$ we obtain

$$
\left(S_{D} f\right)^{\curlyvee}(k)=\sum_{\mu=-\infty}^{\infty}\left(f \circ \psi_{0}\right)^{\curlyvee}(\mu) \cdot\left(\varphi_{0}^{\mu} \circ \psi\right)^{\curlyvee}(k)
$$

with absolute convergence. The important feature is that the required information concerning the boundary function f is reduced to the Fourier coefficients $\left(f \circ \psi_{0}\right)(\mu)$. In particular, no harmonic conjugates are needed here. The Fourier transforms $\left(\varphi_{0}^{\mu} \circ \psi\right)^{\wedge}$ depend only on the domain D, but not on f. So, once computed, variations in the boundary function f only require the evaluation of $\left(f \circ \psi_{0}\right)^{\mathcal{C}}(\mu)$. Since we are restricted to Fourier coefficients, Fast Fourier Transform (FFT) turns out to be a quite efficient tool.

An further approach (cf. [16, pp. 280], [13]) to calculate ($\left.S_{D} f\right)^{\wedge}$ in terms of $f \circ \psi_{0}$ is based on the expansion of the Schwarz-kernel

$$
s(\zeta, z):=\frac{\zeta+\varphi_{0}(z)}{\zeta-\varphi_{0}(z)}
$$

into a Faber series. If $|w|>1$ then $s(w, \cdot) \in A_{+}(\overline{\mathbb{D}})$ and the Faber series

$$
s(w, z)=\sum_{\mu=0}^{\infty} a_{\mu}(w) F_{\mu}(z),
$$

with

$$
a_{k}(w):=(s(w, \cdot) \circ \psi) \subsetneq(k) \quad\left(k \in \mathbb{N}_{0}\right)
$$

converges uniformly on K. Moreover, the parameter integrals a_{k} are holomorphic in $\mathbb{C} \backslash \overline{\mathbb{D}}$. If the a_{k} have radial boundary values $a_{k}(\zeta)$ at almost all $\zeta \in \mathbb{T}$ and if for some $z \in D$ we have $s(\zeta, z)=\sum_{\mu=0}^{\infty} a_{\mu}(\zeta) F_{\mu}(z)$ with "reasonable" convergence with respect to ζ, then the Fourier transform $\left(S_{D} f\right)$ may be deduced from

$$
\left(T_{D} S_{D} f\right)(z)=\int\left(f \circ \psi_{0}\right) \operatorname{Re}(s(\cdot, z)) d m=\sum_{\mu=-\infty}^{\infty} F_{\mu}(z) \int\left(f \circ \psi_{0}\right) b_{\mu} d m
$$

where $b_{0}:=\operatorname{Re}\left(a_{0}\right), b_{k}:=a_{k} / 2$ for $k>0$ and $b_{k}:=\overline{b_{-k}}$ for $k<0$, namely,

$$
\begin{equation*}
\left(S_{D} f\right)^{\curlyvee}(k)=\int\left(f \circ \psi_{0}\right) b_{k} d m \quad(k \in \mathbb{Z}) \tag{6}
\end{equation*}
$$

Again, it is seen that the dependence on f is only in form of $f \circ \psi_{0}$ and in particular no harmonic conjugate is involved. Also, once the a_{k} (and then also the b_{k}) are evaluated, for varying f the computation of $\left(S_{D} f\right)^{\wedge}(k)$ can be done efficiently by numerical integration.

If Γ is piecewise analytic, that is, if ψ extends holomorphically beyond \mathbb{T} except for finitely many points $\zeta_{1}, \ldots, \zeta_{m}$, then, due to deformation of the contour of integration \mathbb{T} underlying the Fourier coefficients $a_{k}(w)$, the functions a_{k} also extend holomorphically beyond \mathbb{T} except for the points $\varphi\left(\psi_{0}\left(\zeta_{1}\right)\right), \ldots, \varphi\left(\psi_{0}\left(\zeta_{m}\right)\right)$.

If Γ is analytic, then $s(\zeta, z)=\sum_{\mu=0}^{\infty} a_{\mu}(\zeta) F_{\mu}(z)$ holds uniformly with respect to ζ, for each $z \in D$ (see [13]). Since the a_{k} are given as Fourier coefficients in terms of the the Schwarz kernel, again FFT can be employed for efficient computation.

3 Example I: Ellipse

For fixed $R>1$ let $D=\left\{z \in \mathbb{C}:(\operatorname{Re}(z) / a)^{2}+(\operatorname{Im}(z) / b)^{2}<1\right\}$ be the domain bounded by the ellipse with semi-axes

$$
a=\frac{1}{2}\left(R+\frac{1}{R}\right), \quad b=\frac{1}{2}\left(R-\frac{1}{R}\right) .
$$

Then $\psi: \mathbb{C}_{\infty} \backslash \overline{\mathbb{D}} \rightarrow \mathbb{C}_{\infty} \backslash K$ is given by

$$
\psi(w):=\frac{1}{2}\left(R w+\frac{1}{R w}\right) \quad\left(w \in \mathbb{C}_{\infty} \backslash \overline{\mathbb{D}}\right)
$$

and

$$
F_{n, K}=\frac{2}{R^{n}} T_{n} \quad(n \in \mathbb{N})
$$

where T_{n} denotes the Chebyshev polynomial of degree n. Since the Chebyshev polynomials can be computed efficiently, the main task for evaluating the n partial sum of (5) is in the approximative computation of the Fourier coefficients

$$
c_{k}(f):=\left(S_{D} f\right)^{\subsetneq}(k)
$$

for $|k| \leq n$. Since the domain is analytically bounded, we can compute the $c_{k}(f)$ with the aid of Equation (6). So we need to have knowledge about b_{k} and hence about the conformal mappings $\varphi_{0}: D \rightarrow \mathbb{D}$ and $\psi_{0}: \mathbb{D} \rightarrow D$, given here in terms of elliptic integrals. The incomplete elliptic integral of the first kind F is defined as

$$
\begin{equation*}
F\left(z, t^{2}\right)=\int_{0}^{z} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-t^{2} x^{2}\right)}} \tag{7}
\end{equation*}
$$

The square root is to be regarded as $\sqrt{1-x} \sqrt{1+x} \sqrt{1-t x} \sqrt{1+t x}$; the arguments are determined such that each factor is equal to 1 for $x=0$. We set $K\left(t^{2}\right):=F\left(1, t^{2}\right)$ for $t^{2} \neq 1$; then K is called the complete elliptic integral of the first kind. The inverse of $F\left(\cdot, t^{2}\right)$ is given by $\mathrm{sn}\left(\cdot, t^{2}\right)$ for $t^{2} \neq 1$, with sn denoting the sinus amplitudinis.

As one can find in [8, p. 322] and [14, p. 296], φ_{0} has the representation

$$
\begin{equation*}
\varphi_{0}(z)=\sqrt{s} \cdot \operatorname{sn}\left(\frac{2 K\left(s^{2}\right)}{\pi} \arcsin (z) ; s^{2}\right) \quad(z \in D) \tag{8}
\end{equation*}
$$

Here, $\arcsin (z)=-i \log \left(i z+\sqrt{1-z^{2}}\right)$ where $\sqrt{1-z^{2}}$ has to be understood as product $\sqrt{1-z} \sqrt{1+z}$ and the branches of the square roots are taken such that each factor is equal to 1 for $z=0$, and the principal value of the logarithm is taken. The modulus $s \in(0,1)$ can be computed via the equation

$$
\frac{\pi K\left(1-s^{2}\right)}{2 K\left(s^{2}\right)}=2 \operatorname{arsinh}(b)
$$

Equation (8) implies

$$
\psi_{0}(w)=\sin \left(\frac{\pi}{2 K\left(s^{2}\right)} F\left(\frac{w}{\sqrt{s}}, s^{2}\right)\right) \quad(w \in \mathbb{D})
$$

For numerical purposes, FFT provides an efficient and stable approach for the evaluation of the Fourier coefficients $a_{k}(\zeta)$ for $k \in \mathbb{N}_{0}$ and $\zeta \in \mathbb{T}$ (cf. [6]).

As for example, we approximately solve several Dirichlet problems with varying the boundary function f where we fix the ellipse with semi axis $a=5 / 4$ and $b=3 / 4$. Figure 1 and Figure 2, respectively, show the 10 -th partial sum of the Faber expansion (5) for $f(z)=|\operatorname{Re}(z)|^{3 / 2}$ and for $f(z)=|\operatorname{Re}(z)|$ with the exact boundary function f in red. The non-smoothness at $\pm i 3 / 4$ in the second case naturally causes a larger error near these points. Furthermore, we consider a boundary functions which has isolated singularities inside or outside the ellipse if considered as (rational) function in \mathbb{C}, namely $f(z)=\operatorname{Re}\left(1 /\left(1-z^{4}\right)\right)$ having the singularities ± 1 (in the interior of the ellipse) and $\pm i$ (in the exterior of the ellipse). In this case, the partial sum is of degree 20. The result can be seen in Figure 3.

Figure 1: Plot of f in the case $f(z)=|\operatorname{Re}(z)|^{3 / 2}$

Figure 2: Approximation of u in the case $f(z)=|\operatorname{Re}(z)|$

Figure 3: Approximation of u in the case $f(z)=\operatorname{Re}\left(1 /\left(1-z^{4}\right)\right)$

4 Example II: Square

We consider the interior D of the square with corners in ± 1 and $\pm i$. Although D is not bounded by an analytic Jordan curve, we apply the above method to compute an approximate solution of a given Dirichlet problem. To do so, we have to know about the conformal mappings φ_{0}, ψ_{0} and ψ. Since D is a square, these functions are given by Schwarz-Christoffel mappings (see e.g. [7, p. 411ff.]): We have

$$
\psi_{0}(w)=C \int_{0}^{w} \frac{d z}{\sqrt{1-z^{4}}}=C F(w,-1) \quad(w \in \mathbb{D})
$$

where C is determined by

$$
1=C \int_{0}^{1} \frac{d w}{\sqrt{1-w^{4}}}
$$

That leads us to

$$
C=\frac{\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{5}{4}\right) \Gamma\left(\frac{1}{2}\right)}
$$

with Γ denoting the gamma function. For the inverse function φ_{0}, we obtain the representation

$$
\varphi_{0}(z)=\operatorname{sn}(z / c,-1) \quad(z \in D)
$$

Further, the function ϕ defined by

$$
\phi(w)=C_{1} \int_{w_{0}}^{w} \frac{\sqrt{1-z^{4}}}{z^{2}} d z+C_{2} \quad(w \in \mathbb{D})
$$

where C_{1}, C_{2} and $w_{0} \neq 0$ are chosen so that $\phi(\pm 1)= \pm 1$ and $\phi(\pm i)= \pm i$, maps \mathbb{D} conformally onto $\mathbb{C}_{\infty} \backslash K$ with $\phi(0)=\infty$. One computes

$$
\int_{w_{0}}^{w} \frac{\sqrt{1-z^{4}}}{z^{2}} d z=-\left.\left(\frac{\sqrt{1-z^{4}}}{z}-2(E(z,-1)-F(z,-1))\right)\right|_{w_{0}} ^{w}
$$

where

$$
E\left(z, t^{2}\right)=\int_{0}^{z} \sqrt{\frac{\left(1-t^{2} x^{2}\right)}{\left(1-x^{2}\right)}} d x
$$

denotes the incomplete elliptic integral of the second kind. Here, the root means

$$
\frac{\sqrt{(1-t x)} \sqrt{(1+t x)}}{\sqrt{1-x} \sqrt{1+x}}
$$

Figure 4: Approximation of u in the case $f(z)=|\operatorname{Re}(z)|$

Figure 5: Approximation of u in the case $f(z)=\sqrt{|\operatorname{Re}(z)|}$
where the branches of the roots are taken such that each factor is equal to 1 for $x=0$. By $\psi(w)=\phi(1 / w)$, we obtain the looked-for ψ.

As in the case of analytically bounded domains, the a_{k} do not depend on the boundary function f. However, now we are faced with the problem of having corners in Γ. But still Γ is piecewise analytic, so except for the preimages of the corners under $\varphi \circ \psi_{0}$, the functions a_{k} exist on \mathbb{T}. By modifying the contour of integration appropriately, we can approximately evaluate $a_{k}(\zeta)$ by numerical integration (for details and corresponding MATLAB codes see [13]). Then the Fourier coefficients $c_{k}(f):=\left(S_{D} f\right)^{\wedge}(k)$ can be achieved from (6) by numerical integration.

Computation of the partial sums of (5) also requires evaluation of the Faber polynomials $F_{n, K}$. We have calculated the $F_{n, K}$ with the Schwarz-Christoffel toolbox for MATLAB, which is established by Driscoll and introduced in [3]. Figures 4 to 6 show examples of the 10-th partial sums for different boundary functions f as well as the exact functions in red.

Figure 6: Approximation of u in the case $f(z)=\operatorname{Re}\left(1 / z^{4}\right)$

Data Availability Statement The authors confirm that the data supporting the findings of this work are available within the article.

References

[1] J. H. Curtiss, Solutions of the Dirichlet Problem in the Plane by Approximation with Faber Polynomials, SIAM J. Numer. Anal. 3 (1966): 204-228.
[2] J. H. Curtiss, Faber polynomials and Faber series, Amer. Math. Monthly 78 (1971): 577-596.
[3] T. A. Driscoll, Algorithm 756: A MATLAB Toolbox for Schwarz-Christoffel Mapping, ACM Trans. Math. Softw. 22 (1996): 168-186.
[4] D. Gaier, Lectures on complex approximation. Translated from the German by Renate McLaughlin. Boston: Birkhäuser Boston, 1987
[5] D. Gaier, The Faber Operator and its Boundedness, J. Approx. Theory 101 (1999): 265-277.
[6] K. O. Geddes, Near-Minimax Polynomial Approximation in an Elliptical Region, SIAM J. Numer. Anal. 3 (1978): 1225-1233.
[7] P. Henrici, Applied and Computational Complex Analysis, Volume I, New York: John Wiley \& Sons, 1988.
[8] S. Kanas, T. Sugawa, On Conformal Representations of the Interior of an Ellipse, Ann. Acad. Sci. Fenn. Math. 31 (2006): 329-34.
[9] Y. Katznelson, An Introduction to Harmonic Analysis, Cambridge: Cambridge Univ. Press, 2004.
[10] F. D. Lesley, On Interior and Exterior Conformal Mappings of the Disk, J. London Math. Soc. (2) 20 (1979): 67-78.
[11] F. D. Lesley, Conformal Mappings of Domains Satisfying a Wedge Condition, Proc. Amer. Math. Soc. 93 (1985): 483-488.
[12] J. Müller, An Extended Faber Operator, Constr. Approx. 19 (2003): 399410.
[13] M. Müller, The Harmonic Faber Operator, Dissertation, Trier, 2018, https://ubt.opus.hbz-nrw.de/frontdoor/index/index/year/2018/docId/982
[14] Z. Nehari, Conformal Mapping, New York: Dover Publications, 1975.
[15] T. Ransford, Potential Theory in the Complex Plane, Cambridge: Cambridge University Press, 1995.
[16] P.K. Suetin, translated by E.V. Pankratiev, Series of Faber Polynomials, Amsterdam: Gordon and Breach Science Publishers, 1998.
[17] J. L. Walsh and W. E. Sewell, Sufficient Conditions for Various Degrees of Approximation by Polynomials, Duke Math. J. vol. 6 (1940): 658-705.

Address: University of Trier, FB IV, Mathematics, D-54286 Trier, Germany e-mail: frerick@uni-tier.de, jmueller@uni-tier.de, marvin.mueller2@gmx.de

