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Abstract

In this paper we analyse the topological and linear structure of dif-
ferent subsets of the disc algebra. Among others, we consider the set of
functions in the disc algebra having a Taylor series about 0 which is un-
boundedly divergent on a given subset of the unit circle of vanishing arc
length measure, and the subsets of functions having uniformly bounded
or uniformly convergent Taylor series on the unit circle.
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1 Introduction

The pathological behaviour of Fourier series of continuous functions has been
broadly studied in the past years. Its origin goes back to du Bois-Reymond
(1873), who was the first one to exhibit an example of a continuous function
on the unit circle T := {z ∈ C : |z| = 1} whose Fourier series diverges at a
point. This was improved by Kahane and Katznelson (1966, see e.g. [17]) by
extending the divergence to arbitrary sets E ⊂ T of (arc length) measure zero,
and thus complementing the famous Carleson Theorem on almost everywhere
convergence of Fourier series of functions in L2 ([11]).

In recent years, these divergence properties have been proved to be topolog-
ically generic, that is, not only functions f fulfilling the properties exist, but
they hold true for a residual set of functions in the corresponding spaces (see
e.g. [16]). Moreover, even linear and algebraic structures can be detected within
the set of such functions (see e.g. [2], [4]). We refer to the survey [8] and the
book [1] for a wide background on this topic.

Our aim is to find linear structures in various subsets of the disc algebra. We
recall some standard notation: Let D denote the open disc in the complex plane
C, so that D = D∪T. For K a compact space, let C(K) be the Banach space of
continuous functions f : K −→ C endowed with the supremum norm ‖f‖∞ =
supz∈K |f(z)|. We will write H(D) for the family of holomorphic functions on
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the unit disc D. Then, each f ∈ H(D) can be represented as f(z) =
∑∞
k=0 akz

k

for z ∈ D, with ak being the k-th Taylor coefficient with respect to 0. The disc
algebra A(D) is defined as the Banach space of functions f ∈ H(D) which are
continuously extendable up to the boundary T. One can identify A(D) with the
space A(D) = {f ∈ C(D) : f holomorphic in D} with the uniform norm

‖f‖∞ = max
z∈D
|f(z)| = max

z∈T
|f(z)| = sup

z∈D

∣∣∣∣∣
∞∑
k=0

akz
k

∣∣∣∣∣ .
Fejér’s Theorem implies that the polynomials form a dense subset of A(D).

In the first part we will report on the existence of large topological and
algebraic structures of subsets of functions in the disc algebra whose Taylor
series about 0 are unboundedly divergent on certain subsets of the unit circle.
While having mainly survey character, two results complementing the theory
are proved. In the second part we search for linear and algebraic structures in
subsets of the space of functions in the disc algebra having uniformly bounded
or uniformly convergent Taylor series. In the third part we consider subspaces
of the disc algebra consisting of functions whose Taylor series about 0 converges
on subsets of the unit circle.

We recall some definitions and results that will be used occasionally. If X is
a Baire space, a subset A is said to be residual if it contains a dense Gδ-subset
of X. Given a vector space X and a subset A, we say that A is maximal lineable
whenever there is a vector space M such that M \{0} ⊂ A and the dimension of
M equals the dimension of X. Moreover, if X is a topological vector space, then
A is said to be spaceable if there is an infinite dimensional closed vector space
M with M \ {0} ⊂ A, and dense-lineable if there is a dense infinite dimensional
vector space M with M \ {0} ⊂ A. If X is a metrizable separable topological
vector space, and Y ⊂ X is a vector subspace, then X \Y is dense-lineable if X
is lineable (see [10]). Thus, if X\Y is spaceable, then X\Y is also dense-lineable
(and maximal lineable). Finally, when X is a topological vector space contained
in some (linear) algebra, then A is called algebrable if there is an algebra M so
that M \ {0} ⊂ A, and M is infinitely generated, that is, the cardinality of any
system of generators of M is infinite, and dense-algebrable if the algebra M can
be chosen to be dense.

Remark 1.1. Let X and Z be Fréchet spaces, and T : Z → X be a continuous
linear operator with range Y = T (Z) non-closed. Then, according to a result of
Kitson and Timoney ([18]), the complement X\Y is spaceable. By considering
the inclusion map T : Y → X, for a Fréchet space Y 6= X with Y densely and
continuously embedded in X, it is seen that the complement X \Y is spaceable.

Remark 1.2. By assuming the continuum hypothesis, we have that for X a
non-separable F-space, and Y a closed separable subspace of X, the set X\Y is
maximal lineable.
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2 Unbounded divergence

Given a sequence (wn)n∈N of complex numbers, we say that (wn)n∈N is un-
boundedly divergent if supn∈N |wn| =∞. A strengthened version of the Kahane-
Katznelson Theorem says that, for each Fσ-set E of vanishing (arc length) mea-
sure, a residual set of functions in C(T) exists so that the Fourier series of f is
unboundedly divergent in each point of E (see e.g. [16]). Moreover, the set of
functions in C(T) having unboundedly divergent Fourier series on E is known
to be spaceable and dense-algebrable (see [1, Theorem 6.3.1], [2]). Our aim is to
complete the picture by showing that similar results hold for the disc algebra.
Thanks to having now a well-elaborated general theory at disposal, it turns out
that this is essentially a consequence of the fact that a lemma of Kahane and
Katznelson (see [17, Chapter II, Lemma 3.4]), which is the basis of the proof of
the Kahane-Katznelson Theorem, holds for algebraic polynomials as well.

We write Sn(f, ·) for the n-th partial sum of the Taylor series
∑∞
k=0 akz

k of
f , that is, Sn(f, z) =

∑n
k=0 akz

k.

Theorem 2.1. Let E ⊂ T be a Fσ-set of measure zero. Then, for a residual
set of functions f ∈ A(D), the sequence (Sn(f, z))n is unboundedly divergent for
each z ∈ E.

Theorem 2.2. Let E ⊂ T be of measure zero. Then, the family A of all
functions f ∈ A(D) such that the partial sums series (Sn(f, z))n is unboundedly
divergent for every z ∈ E is spaceable and dense-algebrable in A(D).

The proofs of the above theorems are based on two general results of Bayart.
The first one ([4, Theorem 2]) focuses on topological genericity in Banach spaces:

Theorem 2.3 (Bayart, 2005). Let X be a Banach space and E a σ-compact
topological space. Suppose that for each t ∈ E and each n ≥ 0 a linear form
ϕn(·, t) is given such that ϕn : X × E −→ C is continuous. For g ∈ X and
t ∈ E let

δN (g, t) = sup
n>N
|ϕn(g, t)− ϕN (g, t)|.

Suppose that, for all M,N > 0 and each compact subset K of E, there exists
g ∈ X such that ‖g‖X ≤ 1 and δN (g, t) > M for every t ∈ K. Then, for
a residual set of functions f ∈ X, the sequence (ϕn(f, t))n≥0 is unboundedly
divergent for each t ∈ E.

Theorem 2.1 is mainly a consequence of Theorem 2.3 combined with the
following auxiliary result, which is a variation of the lemma of Kahane and
Katznelson mentioned above. The result follows from the corresponding lemma
by replacing the anti-holomorphic polynomial ϕ = ϕF constructed in their proof
(see [17, Chapter II, Lemma 3.4]) by the holomorphic polynomial QF := ϕF .

Lemma 2.4. Let F ⊂ T be a union of a finite number of subarcs of T, and
denote the measure of F by δ. There exists a polynomial QF such that

(i) sup
n∈N
|Sn(QF , z)| >

1

2π
log

(
1

3δ

)
on F .
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(ii) ‖QF ‖∞ ≤ 1.

As an immediate consequence we have

Lemma 2.5. Let E ⊂ T be of measure zero. Then, for all M > 0, there exists
a polynomial Q with ‖Q‖∞ ≤ 1 and supn∈N |Sn(Q, z)| > M for all z ∈ E.

Proof. Let M > 0 and let δ > 0 be so that log((3δ)−1) > 2πM . Since E has
measure zero, we can find a finite union F of subarcs of T with E ⊂ F , and
having measure less than δ. If Q = QF is as in Lemma 2.4, then ‖Q‖∞ ≤ 1 and
supn∈N |Sn(Q, z)| > M for all z ∈ E.

Proof of Theorem 2.1. Let X = A(D). For all M,N > 0 define

g(z) := zN+1Q(z) on D,

where Q is the polynomial provided by Lemma 2.5, that is, ‖Q‖∞ ≤ 1 and

sup
n∈N
|Sn(Q, z)| > M on E.

We have then ‖g‖∞ ≤ 1, and

sup
n>N
|Sn(g, z)− SN (g, z)| = sup

n>N
|Sn(g, z)| = sup

m∈N0

|Sm(Q, z)| > M on E.

Now, we just apply Theorem 2.3 with X = A(D) and ϕn(g, ·) = Sn(g, ·), and
the proof is complete.

Recall that a sequence (un)n in a Banach space X is called a basic sequence
if, for each u belonging to M = span{un : n ∈ N}, there exists a sequence
(αn)n of scalars such that u =

∑∞
n=1 αnun. The coefficient functionals u∗k are

defined by

u∗k

( ∞∑
n=1

αnun

)
= αk, k ∈ N.

They are continuous on M , and can be extended to X by the Hahn-Banach
theorem.

Following a construction provided by Bayart in [4, Theorem 3] and [3, The-
orem 3], we obtain for an arbitrary Banach space X ⊂ L1(T):

Theorem 2.6. Let X ⊂ L1(T) be a Banach space so that the polynomials form
a dense subset of X, and let E ⊂ T. Suppose that ‖znf‖X = ‖f‖X for all
n ∈ N and f ∈ X, and that for all M > 0 there exists a polynomial Q such that
‖Q‖X ≤ 1 and supn∈N |Sn(Q, z)| > M for each z ∈ E. Moreover, let A be the
family of all functions f ∈ X such that the sequence (Sn(f, z))n is unboundedly
divergent for every z ∈ E. Then, A is dense-lineable in X, and if, in addition,
there exists a basic sequence (un)n∈N ⊂ X such that ‖u∗n‖ ≤ 1 for all n ∈ N,
then A is spaceable in X.
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Proof of Theorem 2.2. According to Lemma 2.5, for X = A(D), given any M >
0, there exists a polynomial Q with ‖Q‖∞ ≤ 1 and supn∈N |Sn(Q, z)| > M
for all z ∈ E. Moreover, the sequence un(z) = z2

n

is a basic sequence for
A(D) (see e.g. [17, Chapter V, Theorem 1.4]). Now, Theorem 2.6 implies the
spaceability ofA in A(D). Finally, using Lemma 2.5 instead of the corresponding
(Kahne-Katznelson) lemma for trigonometric polynomials in Section 2.1 of [2],
essentially the same proof as of [2, Theorem 2.1] leads to the dense-algebrability
of our family A.

Various recent work focusses on strengthened notions of unbounded diver-
gence. In [5] (see also [6]) it is shown that for a residual set of functions in C(T),
the partial sums of the Fourier series diverge on sets of Hausdorff dimension 1
with a maximal rate of growth.

A different kind of maximal divergence can be formulated in terms of uni-
versality. A formal series

∑∞
k=0 fk of functions fk ∈ C(T) is said to be pointwise

universal on a set E ⊂ T if, for all Baire class 1 functions h : E → C, a subse-
quence of the partial sums converges to h pointwise on E. The series is called
uniformly universal on E if E is closed and the partial sums form a dense set
in C(E). In [20] and [7], respectively, for arbitrary countable subsets E of T,
residuality and maximal dense-lineabilty, as well as spaceability of the set of
functions in C(T) having pointwise universal Fourier series on E were proved.
In [15] and [9], similar results for the disc algebra and Taylor series were added.
As a consequence of the latter, in [9] also residuality, maximal dense-lineability
and spaceability of the set of functions in A(D) having uniformly universal Tay-
lor series on a residual set in the hyperspace of compact sets in T are proved.
Generically, sets in the hyperspace of T are perfect sets, and, as such, in partic-
ular locally uncountable. On the other hand, it is known that sets of uniform
universality are severely restricted in that they have to be strongly porous at
all points ([9]; cf. also [21]).

Combining universality and convergence, in [21] it is shown that for arbi-
trary countable E ⊂ T functions in the disc algebra exist with Taylor series
being pointwise universal on E and converging pointwise except for a set of
vanishing Hausdorff dimension. For finite E, the convergence can take place
locally uniformly on T \ E.

3 Uniformly bounded series

In this section we consider the space Aub(D) of all functions f in the disc alge-
bra whose partial sums (Sm(f, ·))m are uniformly bounded with respect to the
uniform norm, that is

Aub(D) = {f ∈ A(D) : (‖Sm(f, ·)‖∞)m is bounded}.

We endow this space with the natural metric

‖f‖ub := sup
m∈N0

‖Sm(f, ·)‖∞.
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Since ‖f‖∞ ≤ ‖f‖ub for f ∈ Aub(D), the space Aub(D) is continuously embedded
in A(D).

Lemma 3.1. (Aub(D), ‖ · ‖ub) is a Banach space.

Proof. Let (fn)n ⊂ Aub(D) be a Cauchy sequence. Then, for all ε > 0, there
exists N ∈ N such that for all r, s ≥ N and m ∈ N0 we have

‖Sm(fr − fs, ·)‖∞ < ε.

Since (fn)n is a Cauchy sequence in A(D), there exists f ∈ A(D) such that
‖f − fn‖∞ → 0 as n → +∞. From Cauchy’s estimates, we have |ak| ≤ ‖f‖∞
for k ≥ 0, and then

|Sm(f, z)| ≤
m∑
k=0

|ak| ≤ (m+ 1)‖f‖∞.

Hence, for fixed m ∈ N0, the mapping Tmf = Sm(f, ·) is continuous from A(D)
to A(D). Now, for n ≥ N and m ∈ N0

ε > ‖Sm(fr − fN , ·)‖∞ → ‖Sm(f − fN , ·)‖∞

as r → +∞, hence ‖Sm(f − fn, ·)‖∞ ≤ ε for n ≥ N and m ∈ N0. This means
that

‖f − fn‖ub ≤ ε

for n ≥ N . Finally with M := supm ‖Sm(fN , ·)‖∞ we obtain that

‖Sm(f, ·)‖∞ ≤ ‖Sm(f − fN , ·)‖∞ + ‖Sm(fN , ·)‖∞ < ε+M

for all m ∈ N0, which shows that f ∈ Aub(D).

Since, by definition, for f ∈ Aub(D) we have uniform boundedness of the
sequence partial sums Snf on D, the set A from Theorem 2.2 is contained in
A(D) \Aub(D). Thus, Theorem 2.2 implies

Theorem 3.2. The set A(D)\Aub(D) is spaceable and dense-algebrable in A(D).

As a consequence of the following result of Erdös, Herzog and Piranian ([12]),
we will show that the space Aub(D) is not separable.

Theorem 3.3 (Erdös, Herzog and Piranian, 1954). Let E ⊂ T be a Fσ-set
of logarithmic measure zero. Then, there exists a function f ∈ Aub(D) so that
Sn(f, ·) diverges on E and converges on T\E.

Theorem 3.4. The space (Aub(D), ‖ · ‖ub) is not separable.

Proof. According to Theorem 3.3, there exists a function f ∈ Aub(D) such that
(Sn(f, 1))n diverges and (Sn(f, z))n converges for all z ∈ T\{1}. We choose
M > 0 such that for all N ∈ N there are n,m ≥ N with

|Sn(f, 1)− Sm(f, 1)| ≥M. (1)
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Now, given ζ ∈ T, we can consider the functions fζ ∈ Aub(D) given by

fζ(z) := f
(
ζz
)
,

that is, fζ is the rotation of f via ζ ∈ T, and so fζ has the same behaviour at
the point ζ ∈ T as f at the point 1. We consider the family F := {fζ : ζ ∈ T} in
Aub(D), which is uncountable, and such that for each ζ the sequence (Sn(fζ , ·))n
converges on T \ {ζ} and satisfies (1) at the point ζ.

By way of contradiction, assume that Aub(D) is separable, that is, there
exists D ⊂ Aub(D) countable and dense. We write D := {gk : k ∈ N}, and put
ε := M/6. Then, for all ζ ∈ T, there exists k(ζ) ∈ N such that

‖fζ − gk(ζ)‖ub = sup
m∈N0

‖Sm(fζ − gk(ζ), ·)‖∞ < ε.

In particular, for all m ∈ N0 and z ∈ T we have

|Sm(fζ , z)− Sm(gk(ζ), z)| < ε.

Since the family F is uncountable, and D is countable, there must exist
ζ, ζ ′ ∈ T with ζ ′ 6= ζ, and such that k(ζ) = k(ζ ′) =: k. Then, for z = ζ and
n,m satisfying (1) we obtain

|Sn(gk, ζ)− Sm(gk, ζ)| ≥ |Sn(fζ , ζ)− Sm(fζ , ζ)| − |Sm(fζ − gk, ζ)|

−|Sn(fζ − gk, ζ)| ≥M − 2ε = 2M/3.

Thus, the function gk ∈ Aub(D) has the same property at the point ζ ∈ T as
the function fζ , that is, the sequence (Sn(gk, ζ))n is divergent.

On the other hand, for n,m ∈ N so large that |Sm(fζ′ , ζ)− Sm(fζ′ , ζ)| < ε,
we have that

|Sn(gk, ζ)− Sm(gk, ζ)| ≤ |Sn(gk, ζ)− Sn(fζ′ , ζ)|+ |Sn(fζ′ , ζ)− Sm(fζ′ , ζ)|

+|Sm(fζ′ , ζ)− Sm(gk, ζ)| < 3ε = M/2.

Hence, the partial sums of gk would have at the same time a variation greater
than 2M/3 and smaller than M/2 at the point ζ ∈ T, which is clearly a contra-
diction. Thus, the space Aub(D) is not separable.

We denote by Auc(D) the space of all functions in the disc algebra having
uniformly convergent Taylor series on T, that is

Auc(D) := {f ∈ A(D) :

∞∑
k=0

akz
k converges uniformly on T}.

Note that, according to the maximum principle, for all f ∈ Auc(D) the sequence
of partial sums Sn(f, ·) is a uniform Cauchy sequence on D, and therefore con-
verges to f uniformly on D as n→∞. With the norm ‖ · ‖ub the space Auc(D)
is completely metrized:
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Lemma 3.5. Auc(D) is closed in Aub(D).

Proof. Let (fn)n be a sequence in Auc(D) with ‖fn − f‖ub → 0. Then, for all
ε > 0, there exists N ∈ N such that for all n ≥ N and all m ∈ N0, we have
‖fn − f‖∞ < ε, and ‖Sm(f − fn, ·)‖∞ < ε. This implies

‖f − Sm(f, ·)‖∞ ≤ ‖f − fN‖∞ + ‖fN − Sm(fN , ·)‖∞ + ‖Sm(fN − f, ·)‖∞
< 2ε+ ‖fN − Sm(fN , ·)‖∞

for all m ∈ N0. Since (Sm(fN , ·))m converges uniformly to fN , we obtain that
‖f − Sm(f, ·)‖∞ < 3ε for m sufficiently large.

Lemma 3.6. For all f ∈ Auc(D) the partial sums Sn(f, ·) converge to f in
Auc(D). In particular, Auc(D) is the closure of the polynomials in Aub(D).

Proof. Since (Sn(f, ·)) tends to f uniformly on D, for each ε > 0 there exists
N ∈ N such that for m > n ≥ N we have

‖Sm(f, ·)− Sn(f, ·)‖∞ < ε.

The projection property of the Sn implies that

sup
m∈N0

‖Sm(f − Sn(f, ·), ·)‖∞ = sup
m∈N0,m>n

‖Sm(f, ·)− Sn(f, ·)‖∞ ≤ ε

for all n ≥ N .

Since the space Auc(D) is continuously embedded in A(D), and recalling that
Auc(D) is a closed separable subspace of Aub(D), by Remark 1.2 we obtain:

Corollary 3.7. The complement Aub(D)\Auc(D) is maximal lineable.

Let now

Aabs(D) := {f ∈ A(D) :

∞∑
k=0

|ak| < +∞}

be the analytic Wiener algebra of all functions in the disc algebra having abso-
lutely convergent Taylor series (also denoted by W+), endowed with the norm

‖f‖abs :=

∞∑
k=0

|ak| .

According to the Denjoy-Lusin theorem (see e.g [23, p. 232]), a function f be-
longs to Aabs(D) if (Sn(f, ·))n converges absolutely on a set of positive measure.
Denoting by `1 the space of absolutely summable sequences, via the mapping
`1 3 (an)n∈N0

7→
∑∞
k=0 akz

k ∈ Aabs(D) the space Aabs(D) is isometrically iso-
morphic to `1, and hence a Banach space. Since ‖f‖ub ≤ ‖f‖abs for f ∈ Aabs(D),
the space Aabs(D) is continuously embedded in Auc(D).

As a consequence of the result from Remark 1.1, Kitson and Timoney ob-
tained that the set A(D)\Aabs(D) is spaceable. This holds even for the difference
between Auc(D) and Aabs(D):

8



Theorem 3.8. The complement Auc(D)\Aabs(D) is spaceable in Auc(D).

Proof. As noted above, Aabs(D) is continuously embedded in Auc(D). By Fejér’s
or Hardy’s example (see [19]), Auc(D) 6= Aabs(D). Since the polynomials are
dense in Auc(D), also Aabs(D) is dense in Auc(D). According to Remark 1.1,
the proof is complete.

We close this part with a remark concerning conformal mappings in the
disc algebra. If f ∈ H(D) is injective, then Carathéodory’s Theorem shows that
f ∈ A(D) if and only if f(D) is a bounded simply connected domain with locally
connected boundary. By Abel’s Theorem and the Fejér Tauberian theorem (see
e.g. [19, p. 65]), this is also equivalent to f ∈ Auc(D). Note that f does not
need to be injective on T, so this subclass of A(D) is not easily detected by the
corresponding boundary functions.

Moreover, there are functions in A(D) which are injective even on D, and
which do not belong to Aabs(D) (see [22]), so Auc(D)\Aabs(D) contains functions
which map D conformally onto a Jordan domain.

4 Uniform convergence on subsets

So far we have detected linear structures in the partition

Aabs(D) ⊂ Auc(D) ⊂ Aub(D) ⊂ A(D).

We are now interested in studying what happens if we reduce the set of uniform
convergence. If f ∈ A(D) has modulus of continuity o(log δ−1) on some closed
arc B ⊂ T, then the local Dini-Lipschitz theorem (see e.g. [23, p. 63]) shows
that (Sn(f, ·))n converges to f locally uniformly on the corresponding open arc.

We start with functions in the disc algebra that have only one singularity
on T, which we suppose to be the point 1. Then f is smooth on T, and, in
particular, (Sn(f, ·))n converges to f locally uniformly on T \ {1}.

If Cδ = {z : | arg(z−1)| ≤ δ} is the sector with vertex at 1 and angle 2δ < π,
a result of M. Riesz (see e.g. [19, p. 64]) shows that f ∈ Auc(D) if f ∈ A(D)
extends holomorphically to rD \ Cδ, for some r > 1. The situation changes
drastically if the cone is replaced by a circle touching T at the point 1, as the
following result from [13] shows. Here, Bδ(ζ) = {z ∈ C : |z− ζ| ≤ δ} for δ > 0
and ζ ∈ C.

Theorem 4.1 (Gaier, 1952). For arbitrary ρ > 1 there exist a function f ∈
A(D) which extends holomorphically to C\Bρ−1(ρ) and having the property that
(Sn(f, 1))n is divergent.

Let X,Y be Banach spaces, and let (Tn)n be a sequence of continuous linear
operators Tn : X → Y . We recall the Banach-Steinhaus Theorem saying that
pointwise convergence of (Tn)n on X is equivalent to boundedness of the norms
‖Tn‖ and pointwise convergence of (Tn)n on some dense set in X.
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We consider now the compact sets

Kr := rD \ {z : |z − r| < r − 1},

where r > 1, and the continuous linear functionals Tn,r : A(Kr) → C with
Tn,rf := Sn(f, 1).

Proposition 4.2. The sequence (‖Tn,r‖)n is unbounded.

Proof. Assume that the sequence (‖Tn,r‖)n is bounded. Since K has con-
nected complement, according to Mergelian’s Theorem, the set of polynomials
is dense in A(Kr). Moreover, (Tn,rP )n converges for all polynomials P (because
Sn(P, 1) = P (1) for n large enough). But then the sequence (Tn,rf)n converges
for all f ∈ A(Kr), which is not the case by Gaier’s example (Theorem 4.1), for
ρ < r.

The following lemma is a variant of the uniform boundedness principle in
the case of functionals.

Lemma 4.3. Let X be a Banach space and let (ϕn)n∈N be a sequence in the
dual of X. If (‖ϕn‖) is unbounded and (ϕn) converges pointwise on a dense set
in X, then for a residual set of x ∈ X the sequence (ϕnx) forms a dense set in
the scalar field K.

Proof. According to the Universality Criterion (see [14]), it suffices to show that,
for all z ∈ X, c ∈ K and ε > 0, there are x ∈ X and m ∈ N such that ‖x−z‖ < ε
and |ϕmx− c| < ε.

By assumption, y ∈ X, d ∈ K and N exist with ‖y−z‖ < ε/2 and |ϕny−d| <
ε for all n ≥ N . Moreover, the uniform boundedness principle assures that the
set of u ∈ X with supn |ϕnu| = ∞ is residual in X. Therefore, there is u ∈ X
with ‖u‖ < ε/2 and |ϕmu| > |c− d| for some m ∈ N with m ≥ N . Then

v :=
c− d
ϕmu

· u

satisfies ϕmv = c − d and ‖v‖ ≤ ‖u‖ < ε/2, and thus for x := y + v we obtain
‖x− z‖ < ε and |ϕmx− c| = |ϕmy − d| < ε.

Proposition 4.4. Let r > 1. For a residual set of functions f ∈ A(Kr) the
partial sums Sn(f, 1) are dense in C.

Proof. We consider ϕn = Tn,r as above. Since (‖ϕn‖) is unbounded and since
(ϕnP ) is eventually constant for all polynomials P , Mergelian’s Theorem and
Lemma 4.3 imply the assertion.

Consider now a non-empty proper closed subset B of the unit circle and the
space

Auc(B) := {f ∈ A(D) :

∞∑
k=0

akz
k converges uniformly on B},
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endowed with the norm

‖f‖uc,B := ‖f‖∞ + sup
m∈N0

‖Sm(f, ·)‖∞,B ,

where ‖f‖∞,B := supz∈B |f(z)|. With essentially the same proof as for Lemma
3.1 and 3.5 it is seen that (Auc(B), ‖ · ‖uc,B) is a Banach space.

For f ∈ A(D) and r ∈ (0, 1) we define the functions

fr(z) := f(rz).

Clearly, fr ∈ A(r−1D) ⊂ Aabs(D) for 0 < r < 1.

Lemma 4.5. Let f ∈ Auc(B). Then, the functions fr for r ∈ (0, 1) converge
in ‖ · ‖uc,B-norm to f when r → 1−. Moreover, the polynomials are dense in
Auc(B).

Proof. 1. We show the convergence of fr to f as r → 1− in the ‖ · ‖uc,B norm.
Firstly, we have

Sm(f(z)− fr(z)) =

m∑
k=0

akz
k −

m∑
k=0

akr
kzk =

m∑
k=0

akz
k(1− rk)

= (1− r)
m∑
k=0

akz
k
k−1∑
ν=0

rν = (1− r)
m−1∑
ν=0

rν
m∑

k=ν+1

akz
k

= (1− r)
m−1∑
ν=0

rν(Sm(f, z)− Sν(f, z)).

Since Sm(f, ·) → f (as m → ∞) uniformly on B, the sequence (Sm(f, ·))m
is uniformly Cauchy on B, that is, for every ε > 0, there exists N = N(ε) ∈ N
such that for all m ≥ ν ≥ N we have

‖Sm(f, ·)− Sν(f, ·)‖∞,B < ε.

If we choose r(ε) < 1 such that 2‖f‖uc,B(1− r(ε)N ) < ε, we obtain that for
all r with r(ε) < r < 1, and all m ∈ N0

‖Sm(f − fr, ·)‖∞,B ≤ 2‖f‖uc,B(1− r)
N−1∑
ν=0

rν + (1− r)
m−1∑
ν=N

rνε

≤ 2‖f‖uc,B(1− rN ) + ε(1− rm) ≤ 2ε .

Furthermore, the uniform continuity of the functions fr implies that

‖f − fr‖∞ → 0

as r → 1−. Thus, ‖f − fr‖uc,B → 0, and the proof is complete.
2. The first part implies that Aabs(D) is dense in Auc(B). Since the poly-

nomials are dense in Aabs(D), and since ‖f‖uc,B ≤ 2‖f‖abs for all f ∈ Aabs(D),
the polynomials are also dense in Auc,B(B).
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Since the Taylor series from Gaier’s example (Theorem 4.1) converges locally
uniformly on T \ {1}, we have Auc(B) 6= Auc(D) for all closed sets B ⊂ T \ {1}.
By rotation, the same is true for each proper closed subset B of T. As a
consequence, with Auc(T) := Auc(D) and Auc(∅) := A(D) we obtain

Theorem 4.6. Let B1 ⊂ B2 ⊂ T be closed sets with B1 6= B2. Then the comple-
ment Auc(B1)\Auc(B2) is spaceable in Auc(B1). In particular, A(D)\Auc({1})
is spaceable in A(D).

Proof. Since ‖f‖uc,B ≤ 2‖f‖ub for f ∈ Auc(T), the space Auc(T) is continu-
ously embedded in Auc(B). By definition, Auc(B2) is continuously embedded
in Auc(B1) if B2 6= T. If ζ ∈ B2 \B1, then there exists some f ∈ Auc(B1) such
that Sn(f, ζ) is divergent. This implies Auc(B1) 6= Auc(B2). Since Aabs(D) is
dense in Auc(B1), also Auc(B2) is dense in Auc(B1). Now, the result follows
from Remark 1.1.

If U is a proper open subset of T, and (Bk)k is an increasing sequence of
closed sets with

⋃
k Bk = U , then Auc(U) :=

⋂
k Auc(Bk) equipped with the

sequence of norms (|| · ||uc,Bk
) is a Fréchet space. Since, by Gaier’s example,

Auc(U) 6= Auc(U), we obtain from Remark 1.1, in a similar way as above,

Theorem 4.7. The set Auc(U) \Auc
(
U
)

is spaceable in Auc(U). In particular,
Auc(T \ {1}) \Auc(D) is spaceable in Auc(T \ {1}).

According to a result in [21] already mentioned at the end of the first section,
for finite E ⊂ T, functions in Auc(T\E) with Taylor series universal on E exist.
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