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Abstract

In this paper we consider a class of Banach spaces Bp extending the clas-
sical Dirichlet space through the growth behaviour of the Taylor coeffi-
cients. We focus on the boundary behaviour of functions in Bp and of the
sequence of partial sums of their Taylor series.
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1 Introduction and preliminaries

Let D, T and C denote the open unit disc, its boundary and the complex plane,
respectively. We will write f ∈ H(D) for an analytic function in D, so that we
can represent

f(z) =

∞∑
k=0

akz
k.

Given f ∈ H(D), it is said to belong to the classical Dirichlet space D if its
Dirichlet integral is finite, that is

D := {f ∈ H(D) :

∫
D
|f ′|2 dm2 <∞},

where dm2 denotes integration with respect to the normalized Lebesgue area
measure on D. From f ′(z) =

∑∞
k=1 kakz

k−1 it is easily seen that∫
D
|f ′|2 dm2 =

∞∑
k=1

k|ak|2,

which implies, in particular, that D is a subspace of the Hardy space H2 (see [11]
for Hardy spaces). The Dirichlet space turns into a Banach space by considering
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the norm

‖f‖D :=

(
|f(0)|2 +

∫
D
|f ′|2dm2

)1/2

=

(
|a0|2 +

∞∑
k=1

k|ak|2
)1/2

,

which is induced by the scalar product 〈f, g〉 := f(0)g(0) +

∫
D
f ′g′ dm2.

The Dirichlet space has attracted much attention in the last decades. Rec-
ommended introductions are the monography [13] and the expository article
[27]. It can be actually shown that D is contained in all Hardy spaces Hr, for
r <∞, and it turns out that the situation concerning the boundary behaviour
of f ∈ D and, accordingly, of the partial sums Snf of the Taylor series, is
significantly more favourable than in the case of the Hardy spaces: By Beurl-
ing’s theorem (see e.g. [13] or [27]), the non-tangential limit function of f exists
quasi everywhere, that is, up to a set of vanishing (outer) logarithmic capac-
ity, and, by Abel’s theorem and Fejér’s Tauberian theorem (see e.g. [22], [20,
Remarks I.5.5]), the partial sums Snf converge exactly in the points ζ on the
unit circle T where the non-tangential limit exists. This implies, in particular,
that the sequence (Snf)n converges to the non-tangential limit function quasi
everywhere.

Let now 1 < p ≤ ∞. Several ways of extending the Hilbert space case D to
more general Lp-type Banach spaces cases are quite natural.

On the one hand, extending the definition via the area integral leads to the
analytic Besov spaces

Bp := {f ∈ H(D) : ϕf ′ ∈ Lp(D, τ)},

with ϕ(z) := 1− |z|2 and dτ := ϕ−2dm2, completely normed by

||f ||Bp :=
(
|f(0)|p + ||ϕf ′||Lp(D,τ)

)1/p

(see e.g. [30], [33]). It can be shown that f ∈ Bp if and only if ϕf ′′ ∈
Lp(D, ϕ−1m2) (see e.g. [3, Example 5, p. 18]). With that in mind,

B1 := {f ∈ H(D) :

∫
D
|f ′′| dm2 <∞}

extends the family (Bp)p>1 in a natural way. According to [2], the Besov spaces
Bp are increasing in p, with B∞ being the classical Bloch space.

On the other hand, extending the characterisation of the Dirichlet space via
convergence of the series

∑∞
k=1 k|ak|2 leads to considering, here for 1 ≤ p ≤ ∞,

the `p-type spaces

Bp := {f ∈ H(D) : (kak)k∈N ∈ `p(N, ν)},
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where ϕ(k) = k and dν := ϕ−1dµ with µ denoting the counting measure on N.
For 1 ≤ p <∞ we have

Bp = {f(z) =

∞∑
k=0

akz
k ∈ H(D) :

∞∑
k=1

kp−1|ak|p < +∞}

with the complete norm

‖f‖Bp :=

(
|a0|p +

∞∑
k=1

kp−1|ak|p
)1/p

.

With these notations, D = B2 = B2. We also note that B∞ is the space of all
f ∈ H(D) with ak = O(1/k) (normed by ||f ||B∞ := |a0|+ supk k|ak|) and that
B1 is isomorphic to the analytic Wiener algebra.

For f ∈ H(D), let (Snf)(z) :=
∑n
k=0 akz

k denote the n-th partial sum of
the Taylor series f(z) =

∑∞
k=0 akz

k. From the definition of ‖ · ‖Bp it follows
that, for f ∈ Bp, the partial sums are norm-convergent to f for 1 ≤ p <∞. In
particular, the polynomials are dense in Bp.

While the Besov spaces Bp are quite well understood, less is known about
the spaces Bp, for p > 1. The aim of this paper is to study the boundary
behaviour of functions f ∈ Bp and of the corresponding sequences of partial
sums (Snf)n on T (see Sections 2 and 3). Before that, we investigate several
basic properties of the spaces Bp.

Note that functions in B1 extend continuously to D. On the other hand,

f(z) =

∞∑
k=2

1

k log(k)
zk (z ∈ D)

belongs to Bp for all p > 1 and

lim inf
r→1−

f(r) ≥
∞∑
k=2

1

k log(k)
=∞.

In particular, f is unbounded in D, that is, f does not belong to H∞. According
to the prime number theorem, the same holds for f(z) =

∑∞
k=1 z

k/pk, where pk
denotes the k-th prime number.

Let in the sequel q always denote the conjugate exponent of p, that is

pq = p+ q.

As a consequence of Hölder’s inequality and the Hausdorff-Young theorem we
get

Proposition 1.1. If f(z) =
∑∞
k=0 akz

k ∈ Bp, for some p, then (ak)k ∈ `s for
all s > 1, and f ∈

⋂
r<∞Hr.
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Proof. We may assume that 1 < p <∞. For any p′ > q (or, equivalently q′ < p)
we have that

∞∑
k=1

|ak|q
′

=

∞∑
k=1

kq
′/q 1

kq′/q
|ak|q

′
≤

( ∞∑
k=1

kp−1|ak|p
)q′/p( ∞∑

k=1

1

k
pq′

q(p−q′)

) p−q′
p

A calculation shows that the exponent of the second series being greater than 1
is equivalent to q′ > 1, and so we obtain the convergence of the geometric series
on the right hand side. Now, f ∈ Bp implies the convergence of the series on
the left hand side. With that, the Hausdorff-Young theorem ([12, Theorem A,
p. 76]) allows us to conclude that f ∈ Hr for all r <∞.

As mentioned above, the Besov spaces are increasing in p. In contrast, the
spaces Bp are neither increasing nor decreasing:

Remark 1.2. Let 1 < p < p′ ≤ ∞. On the one hand, for 0 < α < ∞, the
function

fα(z) =

∞∑
k=2

1

k logα(k)
zk

belongs to Bp if and only if α > 1/p. If we choose 1/p′ < α < 1/p, we obtain
that fα ∈ Bp′ but fα /∈ Bp. In particular, the spaces Bp are not decreasing in
p. On the other hand, let r, s ∈ N be so that q′ ≤ s/r < q. A simple calculation
yields that the function fr,s given by the lacunary series

fr,s(z) =

∞∑
k=0

akz
k (z ∈ D),

where ak = 1/2j·r if k = 2j·s for some j ∈ N, and zero otherwise, belongs
to Bp but not to Bp′ . In particular, the spaces Bp are neither increasing in
p. Moreover, if 1 < p < 2, by choosing p′ = 2 it is seen that fr,s does not
belong to Bt for any t < 2, since otherwise, by Theorems A and C from [32], we
would have

∑∞
k=1 k|ak|t < ∞, and thus fr,s would also belong to

⋂
t≤u≤2Bu.

In particular, Bp is not included in
⋃

1<t<2B
t.

The functions fα also show that, for 1 < p ≤ ∞, the space Bp with pointwise
multiplication of functions is not an algebra: By choosing 1/p < α < (1+1/p)/2
we have (fα)2(z) =

∑∞
k=4 ckz

k where the coefficients ck are given by

ck =

k−2∑
j=2

1

j logα(j)(k − j) logα(k − j)

≥ 1

k logα(k)

k−2∑
j=2

1

j logα(j)
≥ 1

k logα(k)
· C

logα−1(k)
=

C

k log2α−1(k)
.
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Hence, we obtain that

∞∑
k=4

kp−1|ck|p ≥ Cp
∞∑
k=4

1

k logp(2α−1)(k)
>

∞∑
k=4

1

k log(k)
=∞.

For f, g ∈ H(D) with f(z) =
∑∞
k=0 akz

k and g(z) =
∑∞
k=0 bkz

k for all z ∈ D,
the Hadamard product f ∗ g is defined by

(f ∗ g)(z) :=

∞∑
k=0

akbkz
k (z ∈ D).

With respect to the Hadamard product, Bp becomes an algebra. Actually, more
generally we have that f ∗ g ∈ Bp if f ∈ Bp and (bk)k is bounded. Moreover,
from the definition it turns out that

B2p = {f ∈ H(D) : f ∗ f ′ = (f ∗ f)′ ∈ Bp}

for p <∞.

Using results of Zhu for the Besov spaces we show:

Theorem 1.3. For 1 ≤ p ≤ 2 the space Bp is continuously embedded in Bp
and, conversely, for 2 ≤ p ≤ ∞ the space Bp is continuously embedded in Bp.

Proof. Consider the linear mapping T : B1 + B2 = B2 → `2(N, ν) given by
Tf = (ak)k, where f(z) =

∑∞
k=0 akz

k. From Theorem C in [30] it follows that
B1 ⊂ B1 with continuous inclusion map. Hence, T |B1 maps B1 continuously
into `1(N, ν). Since B2 = B2 with norm equivalence, an application of the
complex interpolation theorem (see [33, Theorem 1.32] or [5]) together with
Theorem 6.12 in [33] shows that Bp ⊂ Bp for 1 < p < 2, with continuous
inclusion map.

Now, if (bk)k ∈ `∞(N, ν), that is (bk)k is bounded, we have∣∣∣∣∣
∞∑
k=0

bkz
k

∣∣∣∣∣ ≤ sup
k
|bk|

1

1− |z|

and so ϕg ∈ L∞(D, τ), where g(z) =
∑∞
k=0 bkz

k. Also, g belongs to the Bergman
space

A2 = {g ∈ H(D) :

∫
D
|g|2 dm2 <∞}

if and only if (bk)k ∈ `2(N, ν). This shows that T ((bk)k) := ϕg defines a
(bounded) linear mapping T : `2(N, ν)+`∞(N, ν)→ L2(D, τ)+L∞(D, τ). An ap-
plication of the Riesz-Thorin interpolation theorem shows that T maps `p(N, ν)
boundedly to Lp(D, τ) for 2 < p < ∞. Now, if f ∈ Bp, then (bk)k = (kak)k ∈
`p(N, ν), and so ϕf ′ belongs to Lp(D, τ), which means that f ∈ Bp.
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2 Growth and boundary behaviour

Note that functions in B∞ belong to the Bloch space B∞, which means that

f(z) = O

(
log
( 1

1− |z|

))
(|z| → 1−)

for f ∈ B∞. We shall prove that for functions in Bp the growth is restricted by

log1/q(1/(1− |z|q)) (cf. [13, Theorem 1.2.1] for the case p = 2). To this aim, for
each w ∈ D, we compute the norm of the evaluation functional Λw : Bp → C
given by Λwf := f(w).

Note first that

〈f, g〉 := a0b0 +

∞∑
k=1

kakbk, (1)

where f(z) =
∑∞
k=0 akz

k ∈ Bp, g(z) =
∑∞
k=0 bkz

k, defines a linear-antilinear
pairing for the spaces Bp and Bq. Indeed, by the Hölder-Young inequality, and
writing k = k1/pk1/q, we obtain that

|a0b0|+
∞∑
k=1

k|akbk| ≤

(
|a0|p +

∞∑
k=1

kp−1|ak|p
)1/p(

|b0|q +

∞∑
k=1

kq−1|bk|q
)1/q

Since (kzk−1)k∈N is an orthonormal system in L2(D,m2), it is easily seen that

〈f − a0, g − b0〉 =

∫
D
f ′g′ dm2

(cf. [8, Proposition 6.4.2], [2]).

In particular, φg(f) := 〈f, g〉 defines a bounded linear functional on Bp, that
is, φg ∈ (Bp)

′, with ‖φg‖(Bp)′ ≤ ‖g‖Bq . Actually, every functional of (Bp)
′

admits such a representation:

Proposition 2.1. Let 1 < p < ∞. Then g 7→ φg maps Bq isometrically
isomorphic to (Bp)

′.

Proof. According to the preliminary considerations, it suffices to show that each
φ ∈ (Bp)

′ is of the form φg and that ‖g‖Bq ≤ ‖φ‖(Bp)′ . So let φ ∈ (Bp)
′ be

given and let g(z) :=
∑∞
k=0 bkz

k where b0 := φ(1) and bk := φ(zk)/k for k ∈ N.
Now, consider the sequence (ck)k defined by

c0 := |b0|q−2b0,

ck := kq−2|bk|q−2bk, (k ∈ N),

with |bk|q−2bk := 0 if bk = 0. Then, we have that c0b0 = |b0|q and ckbk =
kq−2|bk|q (k ∈ N), while on the other hand |c0|p = |b0|q and kp−1|ck|p =
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kq−1|bk|q (k ∈ N). If we fix an arbitrary N ∈ N, from the boundedness of
φ we obtain that

|b0|q +

N∑
k=1

kq−1|bk|q = φ

(
N∑
k=0

ckz
k

)
≤ ‖φ‖(Bp)′

(
|c0|p +

N∑
k=1

kp−1|ck|p
)1/p

.

Putting all together we obtain that(
|b0|q +

N∑
k=1

kq−1|bk|q
)1/q

≤ ‖φ‖(Bp)′ .

Finally, letting N → ∞ gives us ‖g‖Bq ≤ ‖φ‖(Bp)′ , and from the definition
of (bk)k we have φ = φg.

Now, for w ∈ D we consider the function kw ∈ H(|w|−1D) given by

kw(z) := 1 + log

(
1

1− wz

)
= 1 +

∞∑
k=1

wk

k
zk.

Then

‖kw‖qBq = 1 + log

(
1

1− |w|q

)
= log

(
e

1− |w|q

)
,

and for f(z) =
∑∞
k=0 akz

k we have

Λwf = a0 +

∞∑
k=1

kak
wk

k
= 〈f, kw〉.

So, we can view the functions kw ∈ Bq as a kind of reproducing kernel in Bp.
From Proposition 2.1 we obtain

‖Λw‖(Bp)′ = ‖kw‖Bq = log1/q

(
e

1− |w|q

)
,

and as a consequence, we have:

Theorem 2.2. If 1 < p <∞ and f ∈ Bp, then

|f(z)| ≤ log1/q
( e

1− |z|q
)
‖f‖Bp (z ∈ D).

Remark 2.3. Let ε : D→ (0,∞) be a function such that lim inf |z|→1− ε(z) = 0.
Then, there exists f ∈ Bp such that

f(z) 6= O

(
ε(z) log1/q

(
e

1− |z|q

))
(|z| → 1−).
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Indeed: Let (wn)n be a sequence in D with ε(wn) → 0. Consider the sequence
of functions (gn)n in Bq given by

gn(z) := ε(wn)−1 log−1/q

(
e

1− |wn|q

)
kwn(z) (z ∈ D).

Since

‖gn‖Bq = ε(wn)−1 log−1/q

(
e

1− |wn|q

)
‖kwn‖Bq = ε(wn)−1 →∞

as n → ∞, the sequence (gn)n is unbounded in Bq. By the Banach-Steinhaus
theorem, there exists f ∈ Bp such that supn≥1 |〈f, gn〉| =∞.

In the sequel we investigate the boundary functions and the behaviour of the
partial sums Snf of Bp-functions. We start with an extension of Fejér’s Taube-
rian theorem mentioned in the introduction. It is formulated in [20, Remark
5.5] with the comment that the proof follows along the same lines as the proof
of Fejér’s theorem. Since it is basic for our purposes, we include a proof. For
p = ∞ the result also holds, and is the classical Littlewood’s theorem (see [34,
Vol I, Theorem III 1.38]).

Proposition 2.4. Let f ∈ Bp, where 1 < p ≤ ∞. Then, the sequence of partial
sums of the Taylor series (Snf(ζ))n converges at every point ζ ∈ T at which the
radial limit of f exists.

Proof. Let p < ∞ and f(z) =
∑∞
k=0 akz

k. We put εn :=
∑∞
k=n k

p−1|ak|p and

take n ∈ N so that rn := 1− ε1/p
n /n > 0. Then, for all ζ ∈ T, we have that∣∣∣∣∣

n−1∑
k=0

akζ
k − f(rnζ)

∣∣∣∣∣ =

∣∣∣∣∣
n−1∑
k=0

akζ
k(1− rkn)−

∞∑
k=n

akr
k
nζ
k

∣∣∣∣∣
≤ (1− rn)

n−1∑
k=0

k|ak|+
∞∑
k=n

|ak|rkn

Applying the Hölder inequality and k = k1/pk1/q gives

(1− rn)

n−1∑
k=0

k|ak| ≤ (1− rn)

(
n−1∑
k=0

kp−1|ak|p
)1/p(n−1∑

k=0

kq/p

)1/q

≤ (1− rn)ε
1/p
0 n = ε

1/p
0 ε1/p

n → 0 (n→∞)

and

∞∑
k=n

|ak|rkn ≤ 1

n1/q

∞∑
k=n

k1/q|ak|rkn ≤
1

n1/q

( ∞∑
k=n

kp−1|ak|p
)1/p( ∞∑

k=n

rkqn

)1/q

≤ 1

n1/q
ε1/p
n

1

(1− rn)1/q
= ε1/p2

n → 0 (n→∞)
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In combination with Abel’s limit theorem, the above Tauberian result shows
that, for functions in Bp, convergence of the partials sum (Snf)(ζ) and existence
of a radial limit of f at ζ are equivalent. In order to get information about sets
of convergence on T we relate the spaces Bp (and Bp) to other Banach spaces
of holomorphic functions in the disc.

It is well-known that, for 1 < p <∞, functions in Hp are the Cauchy integral
of their boundary function belonging to Lp(T,m1), with m1 denoting the arc
length measure on T. For p > 1 and 0 < β < 1, the space Hp

β is the space of all
f ∈ H(D) for which there exists F ∈ Lp(T,m1) such that

f(z) =
1

2π

∫
T

F (ζ)

(1− zζ)1−β
dm1(ζ), z ∈ D.

The boundary behaviour of functions in the latter spaces was studied in [19] and
[26]. By considering an arbitrary exponent α of the weight function ϕ, the class
Bp can be extended into the more general Dirichlet-type spaces Dp

α, defined by

Dp
α := {f ∈ H(D) :

∫
D
ϕα|f ′|p dm2 <∞}

for p > 1 and α ∈ R. In particular, we have Bp = Dp
p−2 for 1 < p < ∞. The

spaces Dp
α were studied e.g. in [14], [28], [29]. The approach in these papers is

to represent functions in Dp
α through the class Hp

β . Among others, Girela and
Peláez ([14]) showed that the inclusion

Dp
α ⊂ H

p
(p−α−1)/p

holds true whenever −1 < α < p− 1 and 1 < p ≤ 2, and the converse inclusion
was proved by Twomey (see [28]) if p ≥ 2. So, in particular, Bp ⊂ Hp

1/p for

1 < p ≤ 2. In [29] also the spaces Bp are considered. It is shown that Bp ⊂ Hq
1/q

for 1 < p ≤ 2 , while Bp ⊂ Hp
1/p for p ≥ 2.

Let Cα,p denote the Bessel capacity (see [23], [1]; cf. [29]). The capacities
C1/p,p are ordered in the sense that C1/r,r(E) = 0 implies C1/s,s(E) = 0 for
1 < r < s < ∞ (see [23], cf. [29]). Moreover, C1/2,2-capacity is equivalent to
logarithmic capacity in the sense that C1/2,2(E) = 0 if and only if the loga-
rithmic capacity of E vanishes. Thus, in particular, if C1/r,r(E) = 0 for some
1 < r < 2, then the logarithmic capacity of E vanishes.

Remark 2.5. As a consequence of [29, Theorem 1 and Lemma], it follows that,
for 1 < p ≤ 2 and for any f ∈ Bp, the sequence (Snf)n converges C1/q,q-
quasi everywhere on T, and, for any f ∈ Bp, convergence holds C1/p,p-quasi
everywhere. Moreover, if p ≥ 2, then C1/p,p-quasi everywhere convergence of
the sequence (Snf)n holds for all f ∈ Bp.
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From Theorem 2.4 and the fact that Cesaro summability at ζ ∈ T implies
the existence of the non-tangential limit at ζ (see [34, Vol I, Theorem III 1.34])
we finally obtain:

Theorem 2.6. For 1 < p ≤ ∞, f ∈ Bp and ζ ∈ T the following statements are
equivalent:

1. (Snf(ζ))n converges.

2. (Snf(ζ))n is Cesaro summable.

3. f has a non-tangential limit at ζ.

4. f has a radial limit at ζ.

The conditions hold C1/q,q-quasi everywhere for 1 < p ≤ 2 and C1/p,p-quasi
everywhere for 2 < p <∞.

3 Sets of universality

In the last decades, universality properties of various forms have been investi-
gated. We consider universality of the sequence of partial sums Snf . For f
holomorphic in D, Λ an infinite subset of N0 and E a closed subset of T we say
that the sequence of partial sums (Snf)n∈Λ is universal, if {Snf : n ∈ Λ} is a
dense set in C(E), where C(E) denotes the space of all continuous functions on
E endowed with the uniform norm. For X a Banach space of functions holo-
morphic in D, we call the closed set E ⊂ T a set of universality for X if for all
infinite sets Λ ⊂ N0 a residual set of functions in X exists with the property
that (Snf)n∈Λ is universal on E.

In [4] it was proved that each closed set of vanishing arc length measure
is a set of universality for all Hardy spaces Hp, where p < ∞. According to
Twomey’s results (Remark 2.5), this cannot be the case for any of the spaces
Bp, where p < ∞, or Bp with p ≤ 2. Khrushchev ([17, Theorem 3.2]) recently
showed that, for each closed E ⊂ T with capp(E) = 0, where the capacity capp
is determined by an appropriate Besov space norm (see also [18, p. 124]), there
are functions in the Besov space Bp so that (Snf)n∈N is universal on E. Since
capp(E) = 0 if and only if the logarithmic capacity of E vanishes, this shows in
particular that functions in the Dirichlet space D with universal Taylor series
on E exist.

The universality result turns out to be a consequence of a result on simultane-
ous approximation by polynomials. We will show that a similar approximation
result holds for Bp on appropriate small closed sets E ⊂ T, and with that we
also prove the existence of universal Taylor series.
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Remark 3.1. If F,G ⊂ T are closed sets, then the product set F ·G := {z1 ·z2 :
z1 ∈ F, z2 ∈ G} is easily seen to be also closed in T. In particular, if E ⊂ T is
closed, then the product set Ed := {z1 · · · zd : z1, . . . , zd ∈ E} (d ∈ N) of E is
also closed in T. On the other hand, if F,G ⊂ T are closed sets with logarithmic
capacity zero, this does not imply that the product set F ·G has also logarithmic
capacity zero (see [24, Section 6]).

We write p0 :=∞ and pd := 2d/(2d− 1) for d ∈ N.

Theorem 3.2. Let d ∈ N and pd ≤ p < pd−1. Then, each closed set E ⊂ T so
that Ed has logarithmic capacity zero is a set of universality for Bp.

As a consequence of Theorem 3.2 and the Tauberian theorem 2.4, we obtain
the following extension of the converse of Beurling’s theorem for the Dirichlet
space due to Carleson (see e.g. [7], [27, Theorem 5.4], and [13, Theorem 3.4.1]
for a strengthened version).

Corollary 3.3. Let d ∈ N and pd ≤ p < pd−1. If E ⊂ T is closed and so that
Ed has logarithmic capacity zero, then for a residual set of functions f ∈ Bp
radial limits do not exist in any point of E.

As formulated in [10, Lemma 2.5] (cf. also the proof of Theorem 1.1 in
[4]), an application of the Universality Criterion (see [15] or [16]) shows that,
for Theorem 3.2, it suffices to prove the following result on simultaneous ap-
proximation by polynomials in Bpd and C(E), where C(E) is endowed with the
uniform norm ‖ · ‖E).

Theorem 3.4. Let d ∈ N and pd ≤ p < pd−1. If E ⊂ T is a closed set such
that Ed has logarithmic capacity zero, then for all (f, g) ∈ Bp × C(E) and all
ε > 0, there is a polynomial P such that ‖f − P‖Bp < ε and ‖g − P‖C(E) < ε.

Remark 3.5. For the Besov spaces Bp a similar result on simultaneous approx-
imation holds for sets with capp(E) = 0 (see [17, proof of Theorem 3.2]). Note,
however, that, due to the lack of a corresponding Tauberian theorem, in contrast
to the case of functions Bp this does not give information on the non-existence
of radial limits on sets E with capp(E) = 0. For the disc algebra it turns out
that E is a set of universality if and only if E is finite (see [6]). Note that here
unrestricted limits exist in all points of T. Also, this shows that a simultaneous
approximation property as above is not necessary for having universality.

We turn to the proof of the central Theorem 3.4, and start with several
notions and preliminary results.

Let X = (X, || · ||X) be a Banach space of holomorphic functions on D or of
continuous functions on a subset of T so that the polynomials are dense in X,
and that

rX := lim sup
n→∞

||Pn||1/nX <∞
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with Pn(z) := zn. In this case we will say that X is regular. In particular,
regular spaces are separable since the polynomials with (Gaußian) rational co-
efficients also form a dense subset. By X ′ we denote the norm dual of X,
that is, the space of bounded linear functionals on X, and by H(0) the linear
space of germs of functions holomorphic at 0. Then, the Cauchy transform
CX : X ′ → H(0) with respect to X is defined by

(Cφ)(w) := (CXφ)(w) =

∞∑
k=0

φ(Pk)wk

for |w| < 1/rX and φ ∈ X ′. Since the polynomials form a dense set in X, the
Hahn-Banach theorem implies that CX is injective. By definition, the range
RX of CX is the Cauchy dual of X. For closed E ⊂ T, the norm dual of C(E)
is the space of Borel measures supported on E (with the total variation norm),
and the Cauchy dual is the set of all restrictions to D of Cauchy integrals

µ̂(w) :=

∫
1

1− wζ
dµ(ζ) (w ∈ C \ E)

of a complex Borel measure with support in E.

The following consequence of the Hahn-Banach theorem (see [18, Theorem
1.2], [10, Lemma 2.7]) is the basis for our subsequent considerations.

Lemma 3.6. Let X and Y be regular. Then, RX ∩RY = {0} if and only if the
pairs (P, P ), where P ranges over the set of polynomials, form a dense set in
the sum X ⊕ Y .

Remark 3.7. Using Lemma 3.6, the statement on simultaneous approximation
from Theorem 3.4 can be transformed into an equivalent one saying that no non-
zero function in the Cauchy dual of Bpd can coincide on D with some Cauchy
transform µ̂ for a measure µ supported on E (cf. [4, Lemma 2.1]).

For p > 1 and γ ∈ R we consider the two parameter family of spaces Bp,γ ,
given by

Bp,γ := {f(z) =

∞∑
k=0

akz
k ∈ H(D) :

∞∑
k=1

kγ |ak|p < +∞},

which become Banach spaces when endowed with the norm

‖f‖Bp,γ :=

(
|a0|p +

∞∑
k=1

kγ |ak|p
)1/p

.

In particular, B2,−1 is the classical Bergman space A2.

Hölder’s inequality shows that for γ > p − 1 the spaces Bp,γ are contained
in the analytic Wiener algebra. In [29], results on the convergence of (Snf) for
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0 < γ ≤ p− 1 and functions f ∈ Bp,γ were obtained by relating the spaces Bp,γ
to appropriate Hp

β . In the limiting case Bp = Bp,p−1, Theorem 3.2 provides a
result in the converse direction. The proof relies mainly on the fact that the
Cauchy dual is of a certain Bergman type:

Proposition 3.8. Let γ ∈ R and 1 < p < ∞. Then, the Cauchy dual of
Bp,γ equals B1,−γq/p with ||φ||(Bp,γ)′ = ||Cφ||Bq,−γq/p for each φ ∈ (Bp,γ)′. In
particular, the Cauchy dual of Bp is Bq,−1.

Proof. Given g(w) =
∑∞
k=0 bkw

k ∈ Bq,−γq/p and f(z) =
∑∞
k=0 akz

k ∈ Bp,γ ,
Hölder’s inequality yields

∞∑
k=0

|akbk| = |a0b0|+
∞∑
k=1

|kγ/pakk−γ/pbk| ≤ ‖f‖Bp,γ‖g‖Bq,−γq/p .

Hence, φg(f) :=
∑∞
k=0 akbk defines a bounded linear functional on Bp,γ with

‖φg‖(Bp,γ)′ ≤ ‖g‖Bq,−γq/p , and Cφg = g.

On the other hand, for φ ∈ (Bp,γ)′ and k ∈ N, let g := Cφ be the Cauchy
transform of φ, and bk := φ(Pk). By considering the sequence (ck)k defined by
c0 := |b0|q−2b0 and ck := k−γq/p|bk|q−2bk for k ∈ N, in a similar way as in the
proof of Proposition 2.1 it can be shown that ‖g‖Bq,−γq/p ≤ ‖φ‖(Bp,γ)′ .

If f ∈ H(C∞ \ E1) and g ∈ H(C∞ \ E2) with E1, E2 compact subsets of T
and C∞ the extended plane, then E1 · E2 is compact, and if E1 · E2 6= T, the
Hadamard multiplication theorem implies that f ∗ g ∈ H(C∞ \ (E1 · E2)) with

(f ∗ g)(z) =

∞∑
k=0

a−kb−k/z
k+1

in De = C∞\D if f(z) =
∑∞
k=0 a−k/z

k+1 and g(z) =
∑∞
k=0 b−k/z

k+1 in De (see
[25, Theorem 2.7, Example 2.8]).

Let d ∈ N, f ∈ H(D) with f(z) =
∑∞
k=0 akz

k. We write f∗d for the d-times
iterated Hadamard product

f∗d(z) :=

∞∑
k=0

adkz
k.

With that we have

B2d,−1 = {f ∈ H(D) : f∗d ∈ A2}.

So far we have worked with the spaces Bp,γ on the unit disc. We need to
take into consideration the analogous spaces on the complement of the closed
unit disc with respect to C∞.
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Definition 3.1. Let γ ∈ R and 1 < p <∞. We write De = C∞ \ D and define
Bp,γ,e as the space of all functions f(z) =

∑∞
k=0 bk/z

k+1 ∈ H(De) such that

‖f‖pBp,γ,e :=

∞∑
k=1

kγ |bk|p <∞.

Moreover, for closed subsets E of T we write

Bp,γ(C∞\E) := {f ∈ H(C∞\E) : f |De ∈ Bp,γ,e, f |D ∈ Bp,γ}.

Remark 3.9. A classical theorem on removable singularities for functions in
Bergman spaces (see, e.g. [13, p. 178] or [9]) says that B2,−1(C∞ \ E) reduces
to the zero space if E is a closed subset of T of vanishing logarithmic capacity.
Now, if d ∈ N, according to the Hadamard multiplication theorem, for f ∈
B2d,−1(C∞\E) we have f∗d ∈ B2,−1(C∞ \E∗d). So, if E is a closed subset of T
so that Ed is of logarithmic capacity zero, then

B2d,−1(C∞\E) = {0}.

We finally highlight a remarkable result of Khrushchev and Peller (Remark
after Corollary 3.8 in [18]; see also [21] for a very nice and simple proof).

Lemma 3.10. Let µ be a complex measure supported on T and let d ∈ N. Then
µ̂|D ∈ B2d,−1 implies µ̂ ∈ B2d,−1(C∞ \ T)

With that we are in a position to give the proof of Theorem 3.4, and with
that in particular of Theorem 3.2:

Proof of Theorem 3.4. For pd ≤ p < pd−1 we have 2d− 2 < q ≤ 2d. Let

f(z) =

∞∑
k=0

akz
k ∈ Bq,−1

be so that f = µ̂ for some complex measure µ supported on E. Then,

ak =

∫
ζ
k
dµ(ζ)

for k ∈ N0 and with that |ak| ≤ |µ|(F ) for all k. Since
∑∞
k=0 |ak|q/(k+ 1) <∞,

the boundedness of (ak)k implies that also
∑∞
k=0 |ak|2d/(k + 1) < ∞. Now,

Lemma 3.10 shows that µ̂ belongs to B2d,−1(C∞ \ E). But then Remark 3.9
implies that f = 0. As an application of Lemma 3.6 with X = Bp and Y =
C(E), the statement of Theorem 3.4 holds.

Remark 3.11. Let E ⊂ T be closed set having positive logarithmic capacity.
Then Beurling’s Theorem implies that simultaneous approximation as in Theo-
rem 3.4 does not hold for D = B2, and thus Lemma 3.6 implies the existence of
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a non-zero function f ∈ A2 that coincides with the Cauchy transform µ̂ of some
complex measure µ supported on E. The proof of Theorem 3.4 yields then that
f also belongs to Bq,−1, for all q ≥ 2. Lemma 3.6 now shows that simultaneous
approximation as in Theorem 3.4 does not hold for any of the spaces Bp, where
1 < p ≤ 2.

Let A(D) = {f ∈ C(D) : f holomorphic in D} denote the disc algebra,
and let E ⊂ T be closed. The Rudin-Carleson theorem states that for every
f ∈ C(E) there exists g ∈ A(D) such that f = g on E if E has arc length
measure zero. Khrushchev and Peller proved that a similar result holds for
A(D) ∩ D if the logarithmic capacity of E vanishes and, more generally, for
A(D) ∩ Bp if capp(E) = 0 (see [18, Theorem 3.17], [21], cf. [13, Section 4.3]).
According to results of Wallin and Sjödin, the corresponding conditions turn
out to be also necessary (see [18], [21]).

The main ingredient for the proof of the Khrushchev-Peller theorem is The-
orem 3.8 from [18], which has Lemma 3.10 as corollary. A second important fact
is that for complex measures on T with finite p-energy and closed sets E ⊂ T
with capp(E) = 0 the measure µ vanishes on all closed subsets of E (see [18,
Lemma 3.7], cf. [21, Lemma 1]). By observing that µ vanishes on all closed
subsets F of E if the d-fold convolution µ∗d vanishes on all F d, and by following
and adapting the proof of [18, Theorem 3.17] (or again [21]) one can deduce:

Theorem 3.12. Let d ∈ N and let E ⊂ T be a closed set such that Ed has
logarithmic capacity zero. Then each function in C(E) is the restriction to E
of a function in A(D) ∩Bpd .
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