SoSe 2016 25.04.2016

2. Übung zur Vorlesung Dynamische Systeme Besprechung am Mittwoch, den 4. Mai 2016

A5: Es sei (X, d) ein metrischer Raum. Zeigen Sie: Ist X separabel, so hat X eine abzählbare Basis.

A6: Es seien $(\phi_t)_{t\in T}$ ein dynamisches System auf X und $x\in X$. Zeigen Sie: Ist $\gamma^+(x)$ relativ kompakt, so gilt

$$\operatorname{dist}(\phi_t(x), \omega(x)) \to 0 \qquad (t \to \infty).$$

A7: Es sei (X, d) ein metrischer Raum ohne isolierte Punkte. Zeigen Sie:

- a) Ist $A \subset X$ dicht in X und ist $B \subset A$ endlich, so ist $A \setminus B$ dicht in X.
- b) Ist (ϕ, X) ein dS und existiert ein $x \in X$ mit dichtem Orbit, so ist $\omega(y) = X$ für alle $y \in \gamma(x)$.

A8: Für $\alpha > 0$ sei $\phi : \mathbb{S} \to \mathbb{S}$ definiert durch

$$\phi(z) = e^{i\alpha}z \qquad (z \in \mathbb{S})$$

(Drehung um Winkel α). Beweisen Sie:

- a) Ist $\alpha \in 2\pi \mathbb{Q}$, so ist jedes $z \in \mathbb{S}$ periodisch.
- b) Ist $\alpha \notin 2\pi \mathbb{Q}$, so ist (ϕ, \mathbb{S}) transitiv an ∞ .

Z1: (Zusatzaufgabe)

Finden Sie einen Beweis zum Satz von Baire.